These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34640013)

  • 21. Mechanical and Viscoelastic Properties of Stacked and Grafted Graphene/Graphene Oxide-Polyethylene Nanocomposites: A Coarse-Grained Molecular Dynamics Study.
    Singh PP; Ranganathan R
    ACS Omega; 2024 Feb; 9(8):9063-9075. PubMed ID: 38434848
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New Coarse-Grained Model and Its Implementation in Simulations of Graphene Assemblies.
    Shang JJ; Yang QS; Liu X
    J Chem Theory Comput; 2017 Aug; 13(8):3706-3714. PubMed ID: 28682610
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vibrational characteristics of graphene sheets elucidated using an elastic network model.
    Kim MH; Kim D; Choi JB; Kim MK
    Phys Chem Chem Phys; 2014 Aug; 16(29):15263-71. PubMed ID: 24939373
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Atomistic study of mono/multi-atomic vacancy defects on the mechanical characterization of boron-doped graphene sheets.
    Setoodeh AR; Badjian H; Jahromi HS
    J Mol Model; 2017 Jan; 23(1):2. PubMed ID: 27924412
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular design of stable graphene nanosheets dispersions.
    Konatham D; Striolo A
    Nano Lett; 2008 Dec; 8(12):4630-41. PubMed ID: 19367980
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Atomistic modeling of mechanical properties of polycrystalline graphene.
    Mortazavi B; Cuniberti G
    Nanotechnology; 2014 May; 25(21):215704. PubMed ID: 24785113
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A coarse-grained model for mechanical behavior of phosphorene sheets.
    Liu N; Becton M; Zhang L; Chen H; Zeng X; Pidaparti R; Wang X
    Phys Chem Chem Phys; 2019 Jan; 21(4):1884-1894. PubMed ID: 30632560
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Understanding the thermomechanical behavior of graphene-reinforced conjugated polymer nanocomposites
    Wang Y; Li Z; Sun D; Jiang N; Niu K; Giuntoli A; Xia W
    Nanoscale; 2023 Nov; 15(42):17124-17137. PubMed ID: 37850476
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Graphene Foam: Hole-Flake Network for Uniaxial Supercompression and Recovery Behavior.
    Pan D; Wang C; Wang X
    ACS Nano; 2018 Nov; 12(11):11491-11502. PubMed ID: 30394082
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Compressive modulus and deformation mechanisms of 3DG foams: experimental investigation and multiscale modeling.
    Mahdavi SM; Adibnazari S; Del Monte F; Gutiérrez MC
    Nanotechnology; 2021 Sep; 32(48):. PubMed ID: 34343983
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-Assembled Three-Dimensional Graphene Macrostructures: Synthesis and Applications in Supercapacitors.
    Xu Y; Shi G; Duan X
    Acc Chem Res; 2015 Jun; 48(6):1666-75. PubMed ID: 26042764
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anomalous strength characteristics of Stone-Thrower-Wales defects in graphene sheets - a molecular dynamics study.
    Juneja A; Rajasekaran G
    Phys Chem Chem Phys; 2018 Jun; 20(22):15203-15215. PubMed ID: 29789830
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Atomistic to Mesoscopic Modelling of Thermophysical Properties of Graphene-Reinforced Epoxy Nanocomposites.
    Muhammad A; Sáenz Ezquerro C; Srivastava R; Asinari P; Laspalas M; Chiminelli A; Fasano M
    Nanomaterials (Basel); 2023 Jun; 13(13):. PubMed ID: 37446476
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Critical length scales and strain localization govern the mechanical performance of multi-layer graphene assemblies.
    Xia W; Ruiz L; Pugno NM; Keten S
    Nanoscale; 2016 Mar; 8(12):6456-62. PubMed ID: 26935048
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Graphene-Based Functional Architectures: Sheets Regulation and Macrostructure Construction toward Actuators and Power Generators.
    Cheng H; Huang Y; Shi G; Jiang L; Qu L
    Acc Chem Res; 2017 Jul; 50(7):1663-1671. PubMed ID: 28657710
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular dynamics study of the effect of chemical functionalization on the elastic properties of graphene sheets.
    Zheng Q; Li Z; Geng Y; Wang S; Kim JK
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7070-4. PubMed ID: 21137867
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In situ tensile fracturing of multilayer graphene nanosheets for their in-plane mechanical properties.
    Li P; Cao K; Jiang C; Xu S; Gao L; Xiao X; Lu Y
    Nanotechnology; 2019 Nov; 30(47):475708. PubMed ID: 31507271
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation of Dynamic Impact Responses of Layered Polymer-Graphene Nanocomposite Films Using Coarse-Grained Molecular Dynamics Simulations.
    Yang Z; Chiang CC; Meng Z
    Carbon N Y; 2023 Jan; 203():202-210. PubMed ID: 36506702
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Graphene mechanics: II. Atomic stress distribution during indentation until rupture.
    Costescu BI; Gräter F
    Phys Chem Chem Phys; 2014 Jun; 16(24):12582-90. PubMed ID: 24834440
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessment of the mechanical properties of monolayer graphene using the energy and strain-fluctuation methods.
    Thomas S; Ajith KM; Lee SU; Valsakumar MC
    RSC Adv; 2018 Jul; 8(48):27283-27292. PubMed ID: 35539976
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.