BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 34640174)

  • 1. Waste Mineral Wool and Its Opportunities-A Review.
    Yap ZS; Khalid NHA; Haron Z; Mohamed A; Tahir MM; Hasyim S; Saggaff A
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Comparison of the Environmental Impact of Waste Mineral Wool and Mineral in Wool-Based Geopolymer.
    Łaźniewska-Piekarczyk B; Czop M; Smyczek D
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery of End-of-Life Tyres and Mineral Wool Waste: A Case Study with Gypsum Composite Materials Applying Circular Economy Criteria.
    Zaragoza-Benzal A; Ferrández D; Santos P; Morón C
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of cement addition and briquetting of rock wool on its geomechanical stability in landfills.
    Sattler T; Sartori M; Galler R; Pomberger R; Krainz J; Schimek J; Vollprecht D
    Waste Manag Res; 2020 Apr; 38(4):408-414. PubMed ID: 32114972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Treating landfill gas hydrogen sulphide with mineral wool waste (MWW) and rod mill waste (RMW).
    Bergersen O; Haarstad K
    Waste Manag; 2014 Jan; 34(1):141-7. PubMed ID: 24140376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Chemical and physical characteristics and toxicology of man-made mineral fibers].
    Foà V; Basilico S
    Med Lav; 1999; 90(1):10-52. PubMed ID: 10339953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of mineral wool waste chemical composition, organic resin content and fiber dimensions: Aspects for valorization.
    Yliniemi J; Ramaswamy R; Luukkonen T; Laitinen O; de Sousa ÁN; Huuhtanen M; Illikainen M
    Waste Manag; 2021 Jul; 131():323-330. PubMed ID: 34218065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acid leaching technology for post-consumer gypsum purification.
    Castro-Diaz M; Osmani M; Cavalaro S; Needham P; Parker B; Lovato T
    Open Res Eur; 2023; 3():148. PubMed ID: 38370027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the usage of centrifuging waste of mineral wool melt (CMWW), contaminated with phenol and formaldehyde, in manufacturing of ceramic products.
    Kizinievič O; Balkevičius V; Pranckevičienė J; Kizinievič V
    Waste Manag; 2014 Aug; 34(8):1488-94. PubMed ID: 24569044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilization of Mineral Wools as Alkali-Activated Material Precursor.
    Yliniemi J; Kinnunen P; Karinkanta P; Illikainen M
    Materials (Basel); 2016 Apr; 9(5):. PubMed ID: 28773435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal insulation materials in architecture: a comparative test study with aerogel and rock wool.
    Danaci HM; Akin N
    Environ Sci Pollut Res Int; 2022 Oct; 29(48):72979-72990. PubMed ID: 35619004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recycled gypsum board acted as a mineral swelling agent for improving thermal conductivity characteristics in manufacturing of green lightweight building brick.
    Chiang KY; Yen HR; Lu CH
    Environ Sci Pollut Res Int; 2019 Nov; 26(33):34205-34219. PubMed ID: 30523532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Closing the textile loop: Enzymatic fibre separation and recycling of wool/polyester fabric blends.
    Navone L; Moffitt K; Hansen KA; Blinco J; Payne A; Speight R
    Waste Manag; 2020 Feb; 102():149-160. PubMed ID: 31678801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of rock wool as support material for on-site sanitation: hydrodynamic and mechanical characterization.
    Wanko A; Laurent J; Bois P; Mosé R; Wagner-Kocher C; Bahlouli N; Tiffay S; Braun B; Provo kluit PW
    Environ Technol; 2016; 37(3):369-80. PubMed ID: 26165374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental and geotechnical suitability of recycling waste materials from plasterboard manufacturing.
    Imteaz MA; Arulrajah A; Maghool F
    Waste Manag Res; 2020 Apr; 38(4):383-391. PubMed ID: 31665989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reuse of ultrafine mineral wool production waste in the manufacture of refractory concrete.
    Stonys R; Kuznetsov D; Krasnikovs A; Škamat J; Baltakys K; Antonovič V; Černašėjus O
    J Environ Manage; 2016 Jul; 176():149-56. PubMed ID: 27060660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leaching behaviour of copper slag, construction and demolition waste and crushed rock used in a full-scale road construction.
    Lidelöw S; Mácsik J; Carabante I; Kumpiene J
    J Environ Manage; 2017 Dec; 204(Pt 1):695-703. PubMed ID: 28963970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sustainable Lightweight Insulation Materials from Textile-Based Waste for the Automobile Industry.
    Cai Z; Al Faruque MA; Kiziltas A; Mielewski D; Naebe M
    Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33807970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The leaching potential of sewage sludge and municipal waste incineration ashes in terms of landfill safety and potential reuse.
    Kasina M; Kajdas B; Michalik M
    Sci Total Environ; 2021 Oct; 791():148313. PubMed ID: 34139499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recycling of gneiss rock waste in the manufacture of vitrified floor tiles.
    Souza AJ; Pinheiro BC; Holanda JN
    J Environ Manage; 2010; 91(3):685-9. PubMed ID: 19906480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.