These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 34640208)

  • 1. Internal Stress and Dislocation Interaction of Plate-Shaped Misfitting Precipitates in Aluminum Alloys.
    Muraishi S
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Orientation Dependent Hardening by <001> Rod-Shaped Misfitting Precipitates in Aluminium Alloys.
    Liu J; Muraishi S
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35207921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dislocation Topological Evolution and Energy Analysis in Misfit Hardening of Spherical Precipitate by the Parametric Dislocation Dynamics Simulation.
    Zheng H; Liu J; Muraishi S
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation.
    Jiang S; Wang H; Wu Y; Liu X; Chen H; Yao M; Gault B; Ponge D; Raabe D; Hirata A; Chen M; Wang Y; Lu Z
    Nature; 2017 Apr; 544(7651):460-464. PubMed ID: 28397822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effect of Lattice Misfits on the Precipitation at Dislocations: Phase-Field Crystal Simulation.
    Mao H; Zeng C; Zhang Z; Shuai X; Tang S
    Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative Shape-Classification of Misfitting Precipitates during Cubic to Tetragonal Transformations: Phase-Field Simulations and Experiments.
    Lin YY; Schleifer F; Holzinger M; Ta N; Skrotzki B; Darvishi Kamachali R; Glatzel U; Fleck M
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33809150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of precipitates and dislocation loops on the yield stress of irradiated iron.
    Lehtinen A; Laurson L; Granberg F; Nordlund K; Alava MJ
    Sci Rep; 2018 May; 8(1):6914. PubMed ID: 29720694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multislice image simulations of sheared needle-like precipitates in an Al-Mg-Si alloy.
    Christiansen E; Ringdalen IG; BjØrge R; Marioara CD; Holmestad R
    J Microsc; 2020 Sep; 279(3):265-273. PubMed ID: 32400899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strain hardening recovery mediated by coherent precipitates in lightweight steel.
    Kim SD; Park SJ; Jang JH; Moon J; Ha HY; Lee CH; Park H; Shin JH; Lee TH
    Sci Rep; 2021 Jul; 11(1):14468. PubMed ID: 34262073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic-Scale Insights into the Deformation Mechanism of the Microstructures in Precipitation-Strengthening Alloys.
    Wei C; Tang S; Kong Y; Shuai X; Mao H; Du Y
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36902956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulation of strengthening dependence on precipitate Cr composition in Fe-15at.%Cr alloy.
    Ibrahim SA; Wang Q; Zhang Y; Ado M; Chung GD; Azeem MM
    Micron; 2020 Apr; 131():102823. PubMed ID: 32006890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dislocation loop and irradiation-induced synergistic-competitive mechanism in Cu-rich precipitates: a phase-field study.
    Yang W; Guo Q; Wang K; Lei P; Hou H; Zhao Y
    Sci Rep; 2024 Jun; 14(1):12767. PubMed ID: 38834658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase-Field Modeling of Chemoelastic Binodal/Spinodal Relations and Solute Segregation to Defects in Binary Alloys.
    Mianroodi JR; Shanthraj P; Svendsen B; Raabe D
    Materials (Basel); 2021 Apr; 14(7):. PubMed ID: 33916332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generalized dynamics of moving dislocations in quasicrystals.
    Agiasofitou E; Lazar M; Kirchner H
    J Phys Condens Matter; 2010 Dec; 22(49):495401. PubMed ID: 21406784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiscale modeling of dislocation-precipitate interactions in Fe: From molecular dynamics to discrete dislocations.
    Lehtinen A; Granberg F; Laurson L; Nordlund K; Alava MJ
    Phys Rev E; 2016 Jan; 93(1):013309. PubMed ID: 26871192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-temperature in-situ TEM straining of the interaction with dislocations and particles for Cu-added ferritic stainless steel.
    Kobayashi S; Kaneko K; Yamada K; Kikuchi M; Kanno N; Hamada J
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i28-i29. PubMed ID: 25359827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Yield Stress and Work Hardening Model of Al-Mg-Si Alloy Considering the Strengthening Effect of β" and β' Precipitates.
    Zheng X; Huang Q; Mao H; Li K; Xiao N; Li X; Du Y; Liu Y; Kong Y
    Materials (Basel); 2023 Nov; 16(22):. PubMed ID: 38005112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct measurement of precipitate induced strain in an Al-Zn-Mg-Cu alloy with aberration corrected transmission electron microscopy.
    Ying XR; Du YX; Song M; Lu N; Ye HQ
    Micron; 2016 Nov; 90():18-22. PubMed ID: 27565693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Molecular Dynamics Study on the Dislocation-Precipitate Interaction in a Nickel Based Superalloy during the Tensile Deformation.
    Wan CF; Sun LG; Qin HL; Bi ZN; Li DF
    Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An analytical electron microscopic investigation of precipitation in an Al-Cu-Zn-Mg-Ag alloy.
    Hasan F; Lorimer GW
    Microsc Res Tech; 1993 Mar; 24(4):359-66. PubMed ID: 8513176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.