BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 34640213)

  • 1. Ceramic-Based Piezoelectric Material for Energy Harvesting Using Hybrid Excitation.
    Ambrożkiewicz B; Czyż Z; Karpiński P; Stączek P; Litak G; Grabowski Ł
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing the Performance of Piezoelectric Wind Energy Harvester Using Curve-Shaped Attachments on the Bluff Body.
    Poudel P; Sharma S; Ansari MNM; Vaish R; Kumar R; Ibrahim SM; Thomas P; Bowen C
    Glob Chall; 2023 Apr; 7(4):2100140. PubMed ID: 37020619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Piezoelectric and Electromagnetic Hybrid Galloping Energy Harvester with the Magnet Embedded in the Bluff Body.
    Li X; Bi C; Li Z; Liu B; Wang T; Zhang S
    Micromachines (Basel); 2021 May; 12(6):. PubMed ID: 34071414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Wind Tunnel Study of the Flow-Induced Vibrations of a Cylindrical Piezoelectric Transducer.
    Salem S; Fraňa K
    Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Research and Design of Energy-Harvesting System Based on Macro Fiber Composite Cantilever Beam Applied in Low-Frequency and Low-Speed Water Flow.
    Huang R; Zhou J; Shen J; Tian J; Zhou J; Chen W
    Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trout-like multifunctional piezoelectric robotic fish and energy harvester.
    Tan D; Wang YC; Kohtanen E; Erturk A
    Bioinspir Biomim; 2021 Jun; 16(4):. PubMed ID: 33984855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and Development of a Lead-Freepiezoelectric Energy Harvester for Wideband, Low Frequency, and Low Amplitude Vibrations.
    Kumari N; Rakotondrabe M
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vortex-induced vibration wind energy harvesting by piezoelectric MEMS device in formation.
    Lee YJ; Qi Y; Zhou G; Lua KB
    Sci Rep; 2019 Dec; 9(1):20404. PubMed ID: 31892701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental Study on Magnetic Coupling Piezoelectric-Electromagnetic Composite Galloping Energy Harvester.
    Li X; Ma T; Liu B; Wang C; Su Y
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluid Flow to Electricity: Capturing Flow-Induced Vibrations with Micro-Electromechanical-System-Based Piezoelectric Energy Harvester.
    Kang JG; Kim H; Shin S; Kim BS
    Micromachines (Basel); 2024 Apr; 15(5):. PubMed ID: 38793153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance Evaluation of a Piezoelectric Energy Harvester Based on Flag-Flutter.
    Elahi H; Eugeni M; Fune F; Lampani L; Mastroddi F; Paolo Romano G; Gaudenzi P
    Micromachines (Basel); 2020 Oct; 11(10):. PubMed ID: 33066434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A compound cantilever beam piezoelectric harvester based on wind energy excitation.
    Zhang Z; He L; Hu R; Hu D; Zhou J; Cheng G
    Rev Sci Instrum; 2022 Aug; 93(8):085003. PubMed ID: 36050068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-Dimensional Omnidirectional Wind Energy Harvester with a Cylindrical Piezoelectric Composite Cantilever.
    Xin M; Jiang X; Xu C; Yang J; Lu C
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the Potential of Flow-Induced Vibration Energy Harvesting Using a Corrugated Hyperstructure Bluff Body.
    Yuan Y; Wang H; Yang C; Sun H; Tang Y; Zhang Z
    Micromachines (Basel); 2023 May; 14(6):. PubMed ID: 37374708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linear Segmented Arc-Shaped Piezoelectric Branch Beam Energy Harvester for Ultra-Low Frequency Vibrations.
    Piyarathna IE; Thabet AM; Ucgul M; Lemckert C; Lim YY; Tang ZS
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37299984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micro electro-mechanical system piezoelectric cantilever array for a broadband vibration energy harvester.
    Chun I; Lee HW; Kwon KH
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9253-7. PubMed ID: 25971046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Design and Experiment of a Spring-Coupling Electromagnetic Galloping Energy Harvester.
    Xiong L; Gao S; Jin L; Guo S; Sun Y; Liu F
    Micromachines (Basel); 2023 Apr; 14(5):. PubMed ID: 37241592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multidirectional Piezoelectric Vibration Energy Harvester Based on Cam Rotor Mechanism.
    Jiang X; Liu Y; Wei J; Yang H; Yin B; Qin H; Wang W
    Micromachines (Basel); 2023 May; 14(6):. PubMed ID: 37374743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-Degree-of-Freedom Piezoelectric Energy Harvesting from Vortex-Induced Vibration.
    Lu D; Li Z; Hu G; Zhou B; Yang Y; Zhang G
    Micromachines (Basel); 2022 Nov; 13(11):. PubMed ID: 36363957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autonomous Sensors Powered by Energy Harvesting from von Karman Vortices in Airflow.
    Demori M; Ferrari M; Bonzanini A; Poesio P; Ferrari V
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28902139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.