These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 34640213)

  • 21. A Hybrid Piezoelectric and Electromagnetic Broadband Harvester with Double Cantilever Beams.
    Jiang B; Zhu F; Yang Y; Zhu J; Yang Y; Yuan M
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36837940
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Low-Frequency MEMS Piezoelectric Energy Harvesting System Based on Frequency Up-Conversion Mechanism.
    Huang M; Hou C; Li Y; Liu H; Wang F; Chen T; Yang Z; Tang G; Sun L
    Micromachines (Basel); 2019 Sep; 10(10):. PubMed ID: 31554221
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design and Development of a 2 × 2 Array Piezoelectric-Electromagnetic Hybrid Energy Harvester.
    Han B; Zhang S; Liu J; Jiang Y
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630218
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimization of Non-Uniform Deformation on Piezoelectric Circular Diaphragm Energy Harvester with a Ring-Shaped Ceramic Disk.
    Xu C; Li Y; Yang T
    Micromachines (Basel); 2020 Oct; 11(11):. PubMed ID: 33126540
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Magnetically Coupled Piezoelectric-Electromagnetic Low-Frequency Multidirection Hybrid Energy Harvester.
    Zhu Y; Zhang Z; Zhang P; Tan Y
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630228
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Energy harvesting performance of piezoelectric ceramic and polymer nanowires.
    Crossley S; Kar-Narayan S
    Nanotechnology; 2015 Aug; 26(34):344001. PubMed ID: 26234477
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An Array Magnetic Coupling Piezoelectric and Electromagnetic Energy Harvester for Rotary Excitation.
    Chen Q; Li C; Lv M
    Micromachines (Basel); 2023 Jul; 14(8):. PubMed ID: 37630063
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancing the Bandwidth and Energy Production of Piezoelectric Energy Harvester Using Novel Multimode Bent Branched Beam Design for Human Motion Application.
    Piyarathna IE; Lim YY; Edla M; Thabet AM; Ucgul M; Lemckert C
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772411
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Piezoelectric Particulate Composite for Energy Harvesting from Mechanical Vibration.
    Grzybek D; Kata D; Sikora W; Sapiński B; Micek P; Pamuła H; Huebner J; Rutkowski P
    Materials (Basel); 2020 Nov; 13(21):. PubMed ID: 33147792
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Experimental Investigation of Reynolds Number and Spring Stiffness Effects on Vortex-Induced Vibration Driven Wind Energy Harvesting Triboelectric Nanogenerator.
    Chang Q; Fu Z; Zhang S; Wang M; Pan X
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296785
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Harnessing flow-induced vibrations for energy harvesting: Experimental and numerical insights using piezoelectric transducer.
    Islam M; Ali U; Mone S
    PLoS One; 2024; 19(6):e0304489. PubMed ID: 38857262
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A vibration-based MEMS piezoelectric energy harvester and power conditioning circuit.
    Yu H; Zhou J; Deng L; Wen Z
    Sensors (Basel); 2014 Feb; 14(2):3323-41. PubMed ID: 24556670
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Piezoelectric energy extraction from a cylinder undergoing vortex-induced vibration using internal resonance.
    Joy A; Joshi V; Narendran K; Ghoshal R
    Sci Rep; 2023 Apr; 13(1):6924. PubMed ID: 37117292
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simulation and Experimental Study of a Piezoelectric Stack Energy Harvester for Railway Track Vibrations.
    Min Z; Hou C; Sui G; Shan X; Xie T
    Micromachines (Basel); 2023 Apr; 14(4):. PubMed ID: 37421125
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of Output Performance of a Novel Symmetrical T-Shaped Trapezoidal Micro Piezoelectric Energy Harvester Using a PZT-5H.
    Xu W; Ao H; Zhou N; Song Z; Jiang H
    Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208405
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling and Efficiency Analysis of a Piezoelectric Energy Harvester Based on the Flow Induced Vibration of a Piezoelectric Composite Pipe.
    Zhou M; Al-Furjan MSH; Wang B
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30563059
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Piezoelectric Energy Harvester Response Statistics.
    Gaidai O; Cao Y; Xing Y; Wang J
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36837974
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimental Investigation on a Novel Airfoil-Based Piezoelectric Energy Harvester for Aeroelastic Vibration.
    Shan X; Tian H; Cao H; Feng J; Xie T
    Micromachines (Basel); 2020 Jul; 11(8):. PubMed ID: 32722607
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Research on the Characteristics and Application of Two-Degree-of-Freedom Diagonal Beam Piezoelectric Vibration Energy Harvester.
    Ma T; Sun K; Jia S; Du F; Zhang Z
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146072
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced pyroelectric and piezoelectric properties of PZT with aligned porosity for energy harvesting applications.
    Zhang Y; Xie M; Roscow J; Bao Y; Zhou K; Zhang D; Bowen CR
    J Mater Chem A Mater; 2017 Apr; 5(14):6569-6580. PubMed ID: 28580142
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.