These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 34640294)

  • 1. Analysis of Advanced Pore Morphology (APM) Foam Elements Using Compressive Testing and Time-Lapse Computed Microtomography.
    Borovinsek M; Koudelka P; Sleichrt J; Vopalensky M; Kumpova I; Vesenjak M; Kytyr D
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Geometrical Changes of Spherical Advanced Pore Morphology (APM) Foam Elements during Compressive Deformation.
    Borovinšek M; Vesenjak M; Higa Y; Shimojima K; Ren Z
    Materials (Basel); 2019 Apr; 12(7):. PubMed ID: 30986957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast 4D On-the-Fly Tomography for Observation of Advanced Pore Morphology (APM) Foam Elements Subjected to Compressive Loading.
    Vopalensky M; Koudelka P; Sleichrt J; Kumpova I; Borovinsek M; Vesenjak M; Kytyr D
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porous poly(para-phenylene) scaffolds for load-bearing orthopedic applications.
    DiRienzo AL; Yakacki CM; Frensemeier M; Schneider AS; Safranski DL; Hoyt AJ; Frick CP
    J Mech Behav Biomed Mater; 2014 Feb; 30():347-57. PubMed ID: 24374261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compressive deformation and failure of trabecular structures in a turtle shell.
    Ampaw E; Owoseni TA; Du F; Pinilla N; Obayemi J; Hu J; Nigay PM; Nzihou A; Uzonwanne V; Zebaze-Kana MG; Dewoolkar M; Tan T; Soboyejo W
    Acta Biomater; 2019 Oct; 97():535-543. PubMed ID: 31310853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monotonic and cyclic loading behavior of porous scaffolds made from poly(para-phenylene) for orthopedic applications.
    Hoyt AJ; Yakacki CM; Fertig RS; Dana Carpenter R; Frick CP
    J Mech Behav Biomed Mater; 2015 Jan; 41():136-48. PubMed ID: 25460410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-resolved in situ synchrotron-microCT: 4D deformation of bone and bone analogues using digital volume correlation.
    Peña Fernández M; Kao AP; Bonithon R; Howells D; Bodey AJ; Wanelik K; Witte F; Johnston R; Arora H; Tozzi G
    Acta Biomater; 2021 Sep; 131():424-439. PubMed ID: 34126266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical Modeling and Experimental Behavior of Closed-Cell Aluminum Foam Fabricated by the Gas Blowing Method under Compressive Loading.
    Sharma V; Zivic F; Grujovic N; Babcsan N; Babcsan J
    Materials (Basel); 2019 May; 12(10):. PubMed ID: 31096552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local deformation behavior of surface porous polyether-ether-ketone.
    Evans NT; Torstrick FB; Safranski DL; Guldberg RE; Gall K
    J Mech Behav Biomed Mater; 2017 Jan; 65():522-532. PubMed ID: 27694015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative study on compressive deformation and corrosion behaviour of heat treated Ti4wt%Al foam of different porosity made of milled and unmilled powders.
    Singh P; Singh IB; Mondal DP
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():918-929. PubMed ID: 30813099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large Deformation Finite Element Analyses for 3D X-ray CT Scanned Microscopic Structures of Polyurethane Foams.
    Iizuka M; Goto R; Siegkas P; Simpson B; Mansfield N
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33671456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early Compressive Deformation of Closed-Cell Aluminum Foam Based on a Three-Dimensional Realistic Structure.
    Wan X; Zhu K; Xu Y; Han B; Jing T
    Materials (Basel); 2019 Jun; 12(11):. PubMed ID: 31163578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compressive Deformation Behavior of Closed-Cell Micro-Pore Magnesium Composite Foam.
    Wang J; Wang N; Liu X; Ding J; Xia X; Chen X; Zhao W
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29734700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deformation behavior of porous PHBV scaffold in compression: A finite element analysis study.
    Patel R; Lu M; Diermann SH; Wu A; Pettit A; Huang H
    J Mech Behav Biomed Mater; 2019 Aug; 96():1-8. PubMed ID: 31015108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interconnected porosity analysis by 3D X-ray microtomography and mechanical behavior of biomimetic organic-inorganic composite materials.
    Alonso-Sierra S; Velázquez-Castillo R; Millán-Malo B; Nava R; Bucio L; Manzano-Ramírez A; Cid-Luna H; Rivera-Muñoz EM
    Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():45-53. PubMed ID: 28866187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural monitoring and modeling of the mechanical deformation of three-dimensional printed poly(ε-caprolactone) scaffolds.
    Ribeiro JFM; Oliveira SM; Alves JL; Pedro AJ; Reis RL; Fernandes EM; Mano JF
    Biofabrication; 2017 May; 9(2):025015. PubMed ID: 28349900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphometric Analysis of One-Component Polyurethane Foams Applicable in the Building Sector via X-ray Computed Microtomography.
    Blazejczyk A
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30217098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding compressive deformation behavior of porous Ti using finite element analysis.
    Roy S; Khutia N; Das D; Das M; Balla VK; Bandyopadhyay A; Chowdhury AR
    Mater Sci Eng C Mater Biol Appl; 2016 Jul; 64():436-443. PubMed ID: 27127074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Porosity and Pore-Size Distribution in Ti
    Kapat K; Srivas PK; Rameshbabu AP; Maity PP; Jana S; Dutta J; Majumdar P; Chakrabarti D; Dhara S
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39235-39248. PubMed ID: 29058878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the three-dimensional structure of a metallic foam during compressive deformation.
    McDonald SA; Mummery PM; Johnson G; Withers PJ
    J Microsc; 2006 Aug; 223(Pt 2):150-8. PubMed ID: 16911075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.