These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 34640645)

  • 1. Remaining Useful Life Estimation for Engineered Systems Operating under Uncertainty with Causal GraphNets.
    Mylonas C; Chatzi E
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remaining Useful Life Prediction Method for Bearings Based on LSTM with Uncertainty Quantification.
    Yang J; Peng Y; Xie J; Wang P
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid Degradation Equipment Remaining Useful Life Prediction Oriented Parallel Simulation considering Model Soft Switch.
    Ge C; Zhu Y; Di Y
    Comput Intell Neurosci; 2019; 2019():9179870. PubMed ID: 30992700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Cotraining-Based Semisupervised Approach for Remaining-Useful-Life Prediction of Bearings.
    Yan X; Xia X; Wang L; Zhang Z
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A learnable sampling method for scalable graph neural networks.
    Zhao W; Guo T; Yu X; Han C
    Neural Netw; 2023 May; 162():412-424. PubMed ID: 36963145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Remaining Useful Life Prognosis of Turbofan Engine Using Temporal and Spatial Feature Fusion.
    Peng C; Chen Y; Chen Q; Tang Z; Li L; Gui W
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33435633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remaining Useful Life Prognostics of Bearings Based on a Novel Spatial Graph-Temporal Convolution Network.
    Li P; Liu X; Yang Y
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34205477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning-based anomaly-onset aware remaining useful life estimation of bearings.
    Kamat PV; Sugandhi R; Kumar S
    PeerJ Comput Sci; 2021; 7():e795. PubMed ID: 34909464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remaining Useful Life Prediction Based on Adaptive SHRINKAGE Processing and Temporal Convolutional Network.
    Wang H; Yang J; Shi L; Wang R
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robustness testing framework for RUL prediction Deep LSTM networks.
    Sayah M; Guebli D; Al Masry Z; Zerhouni N
    ISA Trans; 2021 Jul; 113():28-38. PubMed ID: 32646591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the message passing in graph neural networks via power iteration clustering.
    Li X; Cheng Y
    Neural Netw; 2021 Aug; 140():130-135. PubMed ID: 33765528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long Short-Term Memory Neural Network with Transfer Learning and Ensemble Learning for Remaining Useful Life Prediction.
    Wang L; Liu H; Pan Z; Fan D; Zhou C; Wang Z
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying uncertainty in graph neural network explanations.
    Jiang J; Ling C; Li H; Bai G; Zhao X; Zhao L
    Front Big Data; 2024; 7():1392662. PubMed ID: 38784676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remaining Useful Life Prediction of Rolling Bearings Based on Multi-scale Permutation Entropy and ISSA-LSTM.
    Wang H; Zhang X; Ren M; Xu T; Lu C; Zhao Z
    Entropy (Basel); 2023 Oct; 25(11):. PubMed ID: 37998169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GNNLens: A Visual Analytics Approach for Prediction Error Diagnosis of Graph Neural Networks.
    Jin Z; Wang Y; Wang Q; Ming Y; Ma T; Qu H
    IEEE Trans Vis Comput Graph; 2023 Jun; 29(6):3024-3038. PubMed ID: 35120004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noise Immunity and Robustness Study of Image Recognition Using a Convolutional Neural Network.
    Ziyadinov V; Tereshonok M
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uncertainty propagation for dropout-based Bayesian neural networks.
    Mae Y; Kumagai W; Kanamori T
    Neural Netw; 2021 Dec; 144():394-406. PubMed ID: 34562813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A RUL Estimation System from Clustered Run-to-Failure Degradation Signals.
    Cho AD; Carrasco RA; Ruz GA
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35891001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. XGraphBoost: Extracting Graph Neural Network-Based Features for a Better Prediction of Molecular Properties.
    Deng D; Chen X; Zhang R; Lei Z; Wang X; Zhou F
    J Chem Inf Model; 2021 Jun; 61(6):2697-2705. PubMed ID: 34009965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Missing data imputation with adversarially-trained graph convolutional networks.
    Spinelli I; Scardapane S; Uncini A
    Neural Netw; 2020 Sep; 129():249-260. PubMed ID: 32563022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.