These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 34640699)

  • 1. Selection of Essential Neural Activity Timesteps for Intracortical Brain-Computer Interface Based on Recurrent Neural Network.
    Yang SH; Huang JW; Huang CJ; Chiu PH; Lai HY; Chen YY
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increasing Robustness of Intracortical Brain-Computer Interfaces for Recording Condition Changes via Data Augmentation.
    Yang SH; Huang CJ; Huang JS
    Comput Methods Programs Biomed; 2024 Jun; 251():108208. PubMed ID: 38754326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of non-stationarity of spike signals on decoding performance in intracortical brain-computer interface: a simulation study.
    Wan Z; Liu T; Ran X; Liu P; Chen W; Zhang S
    Front Comput Neurosci; 2023; 17():1135783. PubMed ID: 37251598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From monkeys to humans: observation-basedEMGbrain-computer interface decoders for humans with paralysis.
    Rizzoglio F; Altan E; Ma X; Bodkin KL; Dekleva BM; Solla SA; Kennedy A; Miller LE
    J Neural Eng; 2023 Nov; 20(5):. PubMed ID: 37844567
    [No Abstract]   [Full Text] [Related]  

  • 5. Balancing Memorization and Generalization in RNNs for High Performance Brain-Machine Interfaces.
    Costello JT; Temmar H; Cubillos LH; Mender MJ; Wallace DM; Willsey MS; Patil PG; Chestek CA
    bioRxiv; 2023 May; ():. PubMed ID: 37292755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A recurrent neural network for closed-loop intracortical brain-machine interface decoders.
    Sussillo D; Nuyujukian P; Fan JM; Kao JC; Stavisky SD; Ryu S; Shenoy K
    J Neural Eng; 2012 Apr; 9(2):026027. PubMed ID: 22427488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of a non-invasive, real-time, human-in-the-loop model of intracortical brain-computer interfaces.
    Awasthi P; Lin TH; Bae J; Miller LE; Danziger ZC
    J Neural Eng; 2022 Oct; 19(5):. PubMed ID: 36198278
    [No Abstract]   [Full Text] [Related]  

  • 8. Neural Decoding Forelimb Trajectory Using Evolutionary Neural Networks with Feedback-Error-Learning Schemes.
    Lin YC; Chou C; Yang SH; Lai HY; Lo YC; Chen YY
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2539-2542. PubMed ID: 30440925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust and accurate decoding of hand kinematics from entire spiking activity using deep learning.
    Ahmadi N; Constandinou TG; Bouganis CS
    J Neural Eng; 2021 Feb; 18(2):. PubMed ID: 33477128
    [No Abstract]   [Full Text] [Related]  

  • 10. Meeting brain-computer interface user performance expectations using a deep neural network decoding framework.
    Schwemmer MA; Skomrock ND; Sederberg PB; Ting JE; Sharma G; Bockbrader MA; Friedenberg DA
    Nat Med; 2018 Nov; 24(11):1669-1676. PubMed ID: 30250141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning neural decoders without labels using multiple data streams.
    Peterson SM; Rao RPN; Brunton BW
    J Neural Eng; 2022 Aug; 19(4):. PubMed ID: 35905727
    [No Abstract]   [Full Text] [Related]  

  • 12. Using adversarial networks to extend brain computer interface decoding accuracy over time.
    Ma X; Rizzoglio F; Bodkin KL; Perreault E; Miller LE; Kennedy A
    Elife; 2023 Aug; 12():. PubMed ID: 37610305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain control of bimanual movement enabled by recurrent neural networks.
    Deo DR; Willett FR; Avansino DT; Hochberg LR; Henderson JM; Shenoy KV
    Sci Rep; 2024 Jan; 14(1):1598. PubMed ID: 38238386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural Decoding for Intracortical Brain-Computer Interfaces.
    Dong Y; Wang S; Huang Q; Berg RW; Li G; He J
    Cyborg Bionic Syst; 2023; 4():0044. PubMed ID: 37519930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving EEG-Based Motor Imagery Classification via Spatial and Temporal Recurrent Neural Networks.
    Ma X; Qiu S; Du C; Xing J; He H
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1903-1906. PubMed ID: 30440769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoding Movements from Cortical Ensemble Activity Using a Long Short-Term Memory Recurrent Network.
    Tseng PH; Urpi NA; Lebedev M; Nicolelis M
    Neural Comput; 2019 Jun; 31(6):1085-1113. PubMed ID: 30979355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generalized neural decoders for transfer learning across participants and recording modalities.
    Peterson SM; Steine-Hanson Z; Davis N; Rao RPN; Brunton BW
    J Neural Eng; 2021 Mar; 18(2):. PubMed ID: 33418552
    [No Abstract]   [Full Text] [Related]  

  • 18. Cluster Kernel Reinforcement Learning-based Kalman Filter for Three-Lever Discrimination Task in Brain-Machine Interface.
    Song Z; Zhang X; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():690-693. PubMed ID: 36086404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Characterization of Brain-Computer Interface Performance Trade-Offs Using Support Vector Machines and Deep Neural Networks to Decode Movement Intent.
    Skomrock ND; Schwemmer MA; Ting JE; Trivedi HR; Sharma G; Bockbrader MA; Friedenberg DA
    Front Neurosci; 2018; 12():763. PubMed ID: 30459542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decoding Kinematic Information From Primary Motor Cortex Ensemble Activities Using a Deep Canonical Correlation Analysis.
    Kim MK; Sohn JW; Kim SP
    Front Neurosci; 2020; 14():509364. PubMed ID: 33177971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.