These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

564 related articles for article (PubMed ID: 34640730)

  • 21. GRIM: A General, Real-Time Deep Learning Inference Framework for Mobile Devices Based on Fine-Grained Structured Weight Sparsity.
    Niu W; Li Z; Ma X; Dong P; Zhou G; Qian X; Lin X; Wang Y; Ren B
    IEEE Trans Pattern Anal Mach Intell; 2022 Oct; 44(10):6224-6239. PubMed ID: 34133272
    [TBL] [Abstract][Full Text] [Related]  

  • 22. HDL-IDS: A Hybrid Deep Learning Architecture for Intrusion Detection in the Internet of Vehicles.
    Ullah S; Khan MA; Ahmad J; Jamal SS; E Huma Z; Hassan MT; Pitropakis N; Arshad ; Buchanan WJ
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214241
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An Improved LDA-Based ELM Classification for Intrusion Detection Algorithm in IoT Application.
    Zheng D; Hong Z; Wang N; Chen P
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32204314
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accuracy Analysis of Feature-Based Automatic Modulation Classification via Deep Neural Network.
    Ge Z; Jiang H; Guo Y; Zhou J
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960346
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An IoT and Fog Computing-Based Monitoring System for Cardiovascular Patients with Automatic ECG Classification Using Deep Neural Networks.
    Rincon JA; Guerra-Ojeda S; Carrascosa C; Julian V
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33371514
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automatic Sparse Connectivity Learning for Neural Networks.
    Tang Z; Luo L; Xie B; Zhu Y; Zhao R; Bi L; Lu C
    IEEE Trans Neural Netw Learn Syst; 2023 Oct; 34(10):7350-7364. PubMed ID: 35073273
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nonconvex Sparse Regularization for Deep Neural Networks and Its Optimality.
    Ohn I; Kim Y
    Neural Comput; 2022 Jan; 34(2):476-517. PubMed ID: 34758482
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intrusion Detection System for IoT Based on Deep Learning and Modified Reptile Search Algorithm.
    Dahou A; Abd Elaziz M; Chelloug SA; Awadallah MA; Al-Betar MA; Al-Qaness MAA; Forestiero A
    Comput Intell Neurosci; 2022; 2022():6473507. PubMed ID: 37332528
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Automated Lung Nodule Detection and Classification Using Deep Learning Combined with Multiple Strategies.
    Nasrullah N; Sang J; Alam MS; Mateen M; Cai B; Hu H
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31466261
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deep learning for electroencephalogram (EEG) classification tasks: a review.
    Craik A; He Y; Contreras-Vidal JL
    J Neural Eng; 2019 Jun; 16(3):031001. PubMed ID: 30808014
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SSGD: SPARSITY-PROMOTING STOCHASTIC GRADIENT DESCENT ALGORITHM FOR UNBIASED DNN PRUNING.
    Lee CH; Fedorov I; Rao BD; Garudadri H
    Proc IEEE Int Conf Acoust Speech Signal Process; 2020 May; 2020():5410-5414. PubMed ID: 33162834
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transfer-Learning-Based Intrusion Detection Framework in IoT Networks.
    Rodríguez E; Valls P; Otero B; Costa JJ; Verdú J; Pajuelo MA; Canal R
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35957178
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamically Optimizing Network Structure Based on Synaptic Pruning in the Brain.
    Zhao F; Zeng Y
    Front Syst Neurosci; 2021; 15():620558. PubMed ID: 34177473
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Redundant feature pruning for accelerated inference in deep neural networks.
    Ayinde BO; Inanc T; Zurada JM
    Neural Netw; 2019 Oct; 118():148-158. PubMed ID: 31279285
    [TBL] [Abstract][Full Text] [Related]  

  • 35. LOss-Based SensiTivity rEgulaRization: Towards deep sparse neural networks.
    Tartaglione E; Bragagnolo A; Fiandrotti A; Grangetto M
    Neural Netw; 2022 Feb; 146():230-237. PubMed ID: 34906759
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SpaRCe: Improved Learning of Reservoir Computing Systems Through Sparse Representations.
    Manneschi L; Lin AC; Vasilaki E
    IEEE Trans Neural Netw Learn Syst; 2023 Feb; 34(2):824-838. PubMed ID: 34398765
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Event-driven implementation of deep spiking convolutional neural networks for supervised classification using the SpiNNaker neuromorphic platform.
    Patiño-Saucedo A; Rostro-Gonzalez H; Serrano-Gotarredona T; Linares-Barranco B
    Neural Netw; 2020 Jan; 121():319-328. PubMed ID: 31590013
    [TBL] [Abstract][Full Text] [Related]  

  • 38. IoT Intrusion Detection Taxonomy, Reference Architecture, and Analyses.
    Albulayhi K; Smadi AA; Sheldon FT; Abercrombie RK
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640752
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
    Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES
    Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automatic recognition of holistic functional brain networks using iteratively optimized convolutional neural networks (IO-CNN) with weak label initialization.
    Zhao Y; Ge F; Liu T
    Med Image Anal; 2018 Jul; 47():111-126. PubMed ID: 29705574
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.