These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
476 related articles for article (PubMed ID: 34640732)
1. Extended-Range Prediction Model Using NSGA-III Optimized RNN-GRU-LSTM for Driver Stress and Drowsiness. Chui KT; Gupta BB; Liu RW; Zhang X; Vasant P; Thomas JJ Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640732 [TBL] [Abstract][Full Text] [Related]
2. Using long short term memory and convolutional neural networks for driver drowsiness detection. Quddus A; Shahidi Zandi A; Prest L; Comeau FJE Accid Anal Prev; 2021 Jun; 156():106107. PubMed ID: 33848710 [TBL] [Abstract][Full Text] [Related]
3. Forecasting water quality variable using deep learning and weighted averaging ensemble models. Zamani MG; Nikoo MR; Jahanshahi S; Barzegar R; Meydani A Environ Sci Pollut Res Int; 2023 Dec; 30(59):124316-124340. PubMed ID: 37996598 [TBL] [Abstract][Full Text] [Related]
4. A novel recurrent neural network approach in forecasting short term solar irradiance. Jaihuni M; Basak JK; Khan F; Okyere FG; Sihalath T; Bhujel A; Park J; Lee DH; Kim HT ISA Trans; 2022 Feb; 121():63-74. PubMed ID: 33840460 [TBL] [Abstract][Full Text] [Related]
5. Predicting respiratory motion using a novel patient specific dual deep recurrent neural networks. Yoganathan SA; Paloor S; Torfeh T; Aouadi S; Hammoud R; Al-Hammadi N Biomed Phys Eng Express; 2022 Sep; 8(6):. PubMed ID: 36130525 [TBL] [Abstract][Full Text] [Related]
7. An Economic Forecasting Method Based on the LightGBM-Optimized LSTM and Time-Series Model. Lv J; Wang C; Gao W; Zhao Q Comput Intell Neurosci; 2021; 2021():8128879. PubMed ID: 34621309 [TBL] [Abstract][Full Text] [Related]
8. Prediction of Head Movement in 360-Degree Videos Using Attention Model. Lee D; Choi M; Lee J Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34070560 [TBL] [Abstract][Full Text] [Related]
9. Predicting Energy Consumption Using LSTM, Multi-Layer GRU and Drop-GRU Neural Networks. Mahjoub S; Chrifi-Alaoui L; Marhic B; Delahoche L Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684681 [TBL] [Abstract][Full Text] [Related]
10. A Post-training Quantization Method for the Design of Fixed-Point-Based FPGA/ASIC Hardware Accelerators for LSTM/GRU Algorithms. Rapuano E; Pacini T; Fanucci L Comput Intell Neurosci; 2022; 2022():9485933. PubMed ID: 35602644 [TBL] [Abstract][Full Text] [Related]
11. Hybrid Deep Recurrent Neural Networks for Noise Reduction of MEMS-IMU with Static and Dynamic Conditions. Han S; Meng Z; Zhang X; Yan Y Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33672478 [TBL] [Abstract][Full Text] [Related]
12. Forecasting stock prices with long-short term memory neural network based on attention mechanism. Qiu J; Wang B; Zhou C PLoS One; 2020; 15(1):e0227222. PubMed ID: 31899770 [TBL] [Abstract][Full Text] [Related]
13. Gated Recurrent Neural Networks for EMG-Based Hand Gesture Classification. A Comparative Study. Samadani A Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1-4. PubMed ID: 30440258 [TBL] [Abstract][Full Text] [Related]
14. Application of Dual-Channel Convolutional Neural Network Algorithm in Semantic Feature Analysis of English Text Big Data. Li Y; Yin C Comput Intell Neurosci; 2021; 2021():7085412. PubMed ID: 34782834 [TBL] [Abstract][Full Text] [Related]
15. Heteroscedasticity effects as component to future stock market predictions using RNN-based models. Sadon AN; Ismail S; Khamis A; Tariq MU PLoS One; 2024; 19(5):e0297641. PubMed ID: 38787874 [TBL] [Abstract][Full Text] [Related]
16. Applying Hybrid Lstm-Gru Model Based on Heterogeneous Data Sources for Traffic Speed Prediction in Urban Areas. Zafar N; Haq IU; Chughtai JU; Shafiq O Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591037 [TBL] [Abstract][Full Text] [Related]
17. Predicting complications of diabetes mellitus using advanced machine learning algorithms. Ljubic B; Hai AA; Stanojevic M; Diaz W; Polimac D; Pavlovski M; Obradovic Z J Am Med Inform Assoc; 2020 Jul; 27(9):1343-1351. PubMed ID: 32869093 [TBL] [Abstract][Full Text] [Related]
18. LSTM and GRU Neural Networks as Models of Dynamical Processes Used in Predictive Control: A Comparison of Models Developed for Two Chemical Reactors. Zarzycki K; Ławryńczuk M Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451065 [TBL] [Abstract][Full Text] [Related]
19. A critical review of RNN and LSTM variants in hydrological time series predictions. Waqas M; Humphries UW MethodsX; 2024 Dec; 13():102946. PubMed ID: 39324077 [TBL] [Abstract][Full Text] [Related]
20. Modeling opening price spread of Shanghai Composite Index based on ARIMA-GRU/LSTM hybrid model. Si Y; Nadarajah S; Zhang Z; Xu C PLoS One; 2024; 19(3):e0299164. PubMed ID: 38478502 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]