These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 34640961)

  • 1. Custom IMU-Based Wearable System for Robust 2.4 GHz Wireless Human Body Parts Orientation Tracking and 3D Movement Visualization on an Avatar.
    González-Alonso J; Oviedo-Pastor D; Aguado HJ; Díaz-Pernas FJ; González-Ortega D; Martínez-Zarzuela M
    Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Wide-Range, Wireless Wearable Inertial Motion Sensing System for Capturing Fast Athletic Biomechanics in Overhead Pitching.
    Lapinski M; Brum Medeiros C; Moxley Scarborough D; Berkson E; Gill TJ; Kepple T; Paradiso JA
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31438549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extraction and Analysis of Respiratory Motion Using Wearable Inertial Sensor System during Trunk Motion.
    Gaidhani A; Moon KS; Ozturk Y; Lee SQ; Youm W
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29258214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cost-Effective Wearable Indoor Localization and Motion Analysis via the Integration of UWB and IMU.
    Zhang H; Zhang Z; Gao N; Xiao Y; Meng Z; Li Z
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31936175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Are Wearable Sensors Valid and Reliable for Studying the Baseball Pitching Motion? An Independent Comparison With Marker-Based Motion Capture.
    Camp CL; Loushin S; Nezlek S; Fiegen AP; Christoffer D; Kaufman K
    Am J Sports Med; 2021 Sep; 49(11):3094-3101. PubMed ID: 34339317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Fully Wireless Wearable Motion Tracking System with 3D Human Model for Gait Analysis.
    Lee K; Tang W
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34204656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of Shoulder Range of Motion Using a Wireless Inertial Motion Capture Device-A Validation Study.
    Rigoni M; Gill S; Babazadeh S; Elsewaisy O; Gillies H; Nguyen N; Pathirana PN; Page R
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31013931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Would a thermal sensor improve arm motion classification accuracy of a single wrist-mounted inertial device?
    Lui J; Menon C
    Biomed Eng Online; 2019 May; 18(1):53. PubMed ID: 31064354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wearable Monitoring of Joint Angle and Muscle Activity.
    Cotton RJ; Rogers J
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():258-263. PubMed ID: 31374639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wearable sensor validation of sports-related movements for the lower extremity and trunk.
    Dahl KD; Dunford KM; Wilson SA; Turnbull TL; Tashman S
    Med Eng Phys; 2020 Oct; 84():144-150. PubMed ID: 32977911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Validity of Wireless Earbud-Type Wearable Sensors for Head Angle Estimation and the Relationships of Head with Trunk, Pelvis, Hip, and Knee during Workouts.
    Kim AR; Park JH; Kim SH; Kim KB; Park KN
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human and Animal Motion Tracking Using Inertial Sensors.
    Marin F
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33114597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Open-Source and Wearable System for Measuring 3D Human Motion in Real-Time.
    Slade P; Habib A; Hicks JL; Delp SL
    IEEE Trans Biomed Eng; 2022 Feb; 69(2):678-688. PubMed ID: 34383640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extraction of Lumbar Spine Motion Using a 3-IMU Wearable Cluster.
    Moon KS; Gombatto SP; Phan K; Ozturk Y
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wearable Kinematic Monitoring System Based on Piezocapacitive Sensors.
    Frediani G; Botondi B; Quartini L; Zonfrillo G; Bocchi L; Carpi F
    Stud Health Technol Inform; 2019; 261():103-108. PubMed ID: 31156099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating Lower Limb Kinematics Using a Lie Group Constrained Extended Kalman Filter with a Reduced Wearable IMU Count and Distance Measurements.
    Sy LWF; Lovell NH; Redmond SJ
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33260386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. fastSW: Efficient Piecewise Linear Approximation of Quaternion-Based Orientation Sensor Signals for Motion Capturing with Wearable IMUs.
    Grützmacher F; Kempfle J; Van Laerhoven K; Haubelt C
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving the Accuracy of Wearable Sensors for Human Locomotion Tracking Using Phase-Locked Regression Models.
    Duong TTH; Zhang H; Lynch TS; Zanotto D
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():145-150. PubMed ID: 31374621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wearable Sensor Clothing for Body Movement Measurement during Physical Activities in Healthcare.
    Ancans A; Greitans M; Cacurs R; Banga B; Rozentals A
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33809433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a 3D workspace shoulder assessment tool incorporating electromyography and an inertial measurement unit-a preliminary study.
    Aslani N; Noroozi S; Davenport P; Hartley R; Dupac M; Sewell P
    Med Biol Eng Comput; 2018 Jun; 56(6):1003-1011. PubMed ID: 29127653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.