BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 34641032)

  • 21. One Step Encapsulation of Mesenchymal Stromal Cells in PEG Norbornene Microgels for Therapeutic Actions.
    Jiang Z; Jiang K; Si H; McBride R; Kisiday J; Oakey J
    ACS Biomater Sci Eng; 2023 Nov; 9(11):6322-6332. PubMed ID: 37831923
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In-air production of 3D co-culture tumor spheroid hydrogels for expedited drug screening.
    Antunes J; Gaspar VM; Ferreira L; Monteiro M; Henrique R; Jerónimo C; Mano JF
    Acta Biomater; 2019 Aug; 94():392-409. PubMed ID: 31200118
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancing the biocompatibility of microfluidics-assisted fabrication of cell-laden microgels with channel geometry.
    Kim S; Oh J; Cha C
    Colloids Surf B Biointerfaces; 2016 Nov; 147():1-8. PubMed ID: 27478957
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Review: 3D cell models for organ-on-a-chip applications.
    Żuchowska A; Baranowska P; Flont M; Brzózka Z; Jastrzębska E
    Anal Chim Acta; 2024 May; 1301():342413. PubMed ID: 38553129
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evolution of Biochip Technology: A Review from Lab-on-a-Chip to Organ-on-a-Chip.
    Azizipour N; Avazpour R; Rosenzweig DH; Sawan M; Ajji A
    Micromachines (Basel); 2020 Jun; 11(6):. PubMed ID: 32570945
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cell-laden microfluidic microgels for tissue regeneration.
    Jiang W; Li M; Chen Z; Leong KW
    Lab Chip; 2016 Nov; 16(23):4482-4506. PubMed ID: 27797383
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microfluidics-based fabrication of cell-laden microgels.
    Mohamed MGA; Ambhorkar P; Samanipour R; Yang A; Ghafoor A; Kim K
    Biomicrofluidics; 2020 Mar; 14(2):021501. PubMed ID: 32161630
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Facile and Scalable Hydrogel Patterning Method for Microfluidic 3D Cell Culture and Spheroid-in-Gel Culture Array.
    Su C; Chuah YJ; Ong HB; Tay HM; Dalan R; Hou HW
    Biosensors (Basel); 2021 Dec; 11(12):. PubMed ID: 34940266
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microfluidic Formulation of Topological Hydrogels for Microtissue Engineering.
    Rojek KO; Ćwiklińska M; Kuczak J; Guzowski J
    Chem Rev; 2022 Nov; 122(22):16839-16909. PubMed ID: 36108106
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Solution fibre spinning technique for the fabrication of tuneable decellularised matrix-laden fibres and fibrous micromembranes.
    Li Z; Tuffin J; Lei IM; Ruggeri FS; Lewis NS; Gill EL; Savin T; Huleihel L; Badylak SF; Knowles T; Satchell SC; Welsh GI; Saleem MA; Huang YYS
    Acta Biomater; 2018 Sep; 78():111-122. PubMed ID: 30099199
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Organ-on-a-chip: A new tool for in vitro research.
    Yan J; Li Z; Guo J; Liu S; Guo J
    Biosens Bioelectron; 2022 Nov; 216():114626. PubMed ID: 35969963
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3D Cell Cultures: Evolution of an Ancient Tool for New Applications.
    Cacciamali A; Villa R; Dotti S
    Front Physiol; 2022; 13():836480. PubMed ID: 35936888
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biosensors integrated 3D organoid/organ-on-a-chip system: A real-time biomechanical, biophysical, and biochemical monitoring and characterization.
    Liu S; Kumari S; He H; Mishra P; Singh BN; Singh D; Liu S; Srivastava P; Li C
    Biosens Bioelectron; 2023 Jul; 231():115285. PubMed ID: 37058958
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Organ-On-Chip Technology: The Future of Feto-Maternal Interface Research?
    Richardson L; Kim S; Menon R; Han A
    Front Physiol; 2020; 11():715. PubMed ID: 32695021
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using Biosensors to Study Organoids, Spheroids and Organs-on-a-Chip: A Mechanobiology Perspective.
    Yousafzai MS; Hammer JA
    Biosensors (Basel); 2023 Sep; 13(10):. PubMed ID: 37887098
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Combined Effects of Co-Culture and Substrate Mechanics on 3D Tumor Spheroid Formation within Microgels Prepared via Flow-Focusing Microfluidic Fabrication.
    Lee D; Cha C
    Pharmaceutics; 2018 Nov; 10(4):. PubMed ID: 30428559
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microfluidic generation of composite biopolymer microgels with tunable compositions and mechanical properties.
    Chau M; Abolhasani M; Thérien-Aubin H; Li Y; Wang Y; Velasco D; Tumarkin E; Ramachandran A; Kumacheva E
    Biomacromolecules; 2014 Jul; 15(7):2419-25. PubMed ID: 24931723
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Musculoskeletal tissues-on-a-chip: role of natural polymers in reproducing tissue-specific microenvironments.
    Petta D; D'Amora U; D'Arrigo D; Tomasini M; Candrian C; Ambrosio L; Moretti M
    Biofabrication; 2022 Aug; 14(4):. PubMed ID: 35931043
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Human Organs-on-Chips: A Review of the State-of-the-Art, Current Prospects, and Future Challenges.
    Zarrintaj P; Saeb MR; Stadler FJ; Yazdi MK; Nezhad MN; Mohebbi S; Seidi F; Ganjali MR; Mozafari M
    Adv Biol (Weinh); 2022 Jan; 6(1):e2000526. PubMed ID: 34837667
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microgels for Cell Delivery in Tissue Engineering and Regenerative Medicine.
    Xuan L; Hou Y; Liang L; Wu J; Fan K; Lian L; Qiu J; Miao Y; Ravanbakhsh H; Xu M; Tang G
    Nanomicro Lett; 2024 Jun; 16(1):218. PubMed ID: 38884868
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.