BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 34641054)

  • 1. Impact of the Enzyme Charge on the Production and Morphological Features of Cellulose Nanofibrils.
    Henríquez-Gallegos S; Albornoz-Palma G; Andrade A; Soto C; Pereira M
    Polymers (Basel); 2021 Sep; 13(19):. PubMed ID: 34641054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellulose nanofibrils manufactured by various methods with application as paper strength additives.
    Zeng J; Zeng Z; Cheng Z; Wang Y; Wang X; Wang B; Gao W
    Sci Rep; 2021 Jun; 11(1):11918. PubMed ID: 34099799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endoglucanase pretreatment aids in isolating tailored-cellulose nanofibrils combining energy saving and high-performance packaging.
    Las-Casas B; Arantes V
    Int J Biol Macromol; 2023 Jul; 242(Pt 4):125057. PubMed ID: 37244346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Cellulose Nanofibrils and TEMPO-mediated Oxidized Cellulose Nanofibrils on the Physical and Mechanical Properties of Poly(vinylidene fluoride)/Cellulose Nanofibril Composites.
    Barnes E; Jefcoat JA; Alberts EM; McKechnie MA; Peel HR; Buchanan JP; Weiss CA; Klaus KL; Mimun LC; Warner CM
    Polymers (Basel); 2019 Jun; 11(7):. PubMed ID: 31252644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches.
    Qing Y; Sabo R; Zhu JY; Agarwal U; Cai Z; Wu Y
    Carbohydr Polym; 2013 Aug; 97(1):226-34. PubMed ID: 23769541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between rheological and morphological characteristics of cellulose nanofibrils in dilute dispersions.
    Albornoz-Palma G; Betancourt F; Mendonça RT; Chinga-Carrasco G; Pereira M
    Carbohydr Polym; 2020 Feb; 230():115588. PubMed ID: 31887943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphological and rheological properties of cellulose nanofibrils prepared by post-fibrillation endoglucanase treatment.
    Wang X; Zeng J; Zhu JY
    Carbohydr Polym; 2022 Nov; 295():119885. PubMed ID: 35989020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradable cellulose I (II) nanofibrils/poly(vinyl alcohol) composite films with high mechanical properties, improved thermal stability and excellent transparency.
    Xing L; Hu C; Zhang W; Guan L; Gu J
    Int J Biol Macromol; 2020 Dec; 164():1766-1775. PubMed ID: 32763405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Transparent and Toughened Poly(methyl methacrylate) Nanocomposite Films Containing Networks of Cellulose Nanofibrils.
    Dong H; Sliozberg YR; Snyder JF; Steele J; Chantawansri TL; Orlicki JA; Walck SD; Reiner RS; Rudie AW
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25464-72. PubMed ID: 26513136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the degree of polymerization of cellulose nanofibers by largely preserving native structure of wood fibers.
    Zhou J; Fang Z; Chen K; Cui J; Yang D; Qiu X
    Carbohydr Polym; 2022 Nov; 296():119919. PubMed ID: 36087974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated enzyme hydrolysis assisted cellulose nanofibril (CNF) fabrication: A sustainable approach to paper mill sludge (PMS) management.
    Li J; Alamdari NE; Aksoy B; Parit M; Jiang Z
    Chemosphere; 2023 Sep; 334():138966. PubMed ID: 37220796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Review on Nonconventional Fibrillation Methods of Producing Cellulose Nanofibrils and Their Applications.
    Wang L; Li K; Copenhaver K; Mackay S; Lamm ME; Zhao X; Dixon B; Wang J; Han Y; Neivandt D; Johnson DA; Walker CC; Ozcan S; Gardner DJ
    Biomacromolecules; 2021 Oct; 22(10):4037-4059. PubMed ID: 34506126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellulose nanofibrils (CNFs) produced by different mechanical methods to improve mechanical properties of recycled paper.
    Hu F; Zeng J; Cheng Z; Wang X; Wang B; Zeng Z; Chen K
    Carbohydr Polym; 2021 Feb; 254():117474. PubMed ID: 33357928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of TEMPO-oxidization strength on the properties of cellulose nanofibril reinforced polyvinyl acetate nanocomposites.
    Hamou KB; Kaddami H; Dufresne A; Boufi S; Magnin A; Erchiqui F
    Carbohydr Polym; 2018 Feb; 181():1061-1070. PubMed ID: 29253932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Curaua and eucalyptus nanofibers films by continuous casting: Mechanical and thermal properties.
    Claro PIC; Corrêa AC; de Campos A; Rodrigues VB; Luchesi BR; Silva LE; Mattoso LHC; Marconcini JM
    Carbohydr Polym; 2018 Feb; 181():1093-1101. PubMed ID: 29253936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-step processing of plasticized starch/cellulose nanofibrils nanocomposites via twin-screw extrusion of starch and cellulose fibers.
    Fourati Y; Magnin A; Putaux JL; Boufi S
    Carbohydr Polym; 2020 Feb; 229():115554. PubMed ID: 31826520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellulose nanofibrils reinforced xylan-alginate composites: Mechanical, thermal and barrier properties.
    Naidu DS; John MJ
    Int J Biol Macromol; 2021 May; 179():448-456. PubMed ID: 33711367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellulose nanofibrils/polyvinyl acetate nanocomposite adhesives with improved mechanical properties.
    Chaabouni O; Boufi S
    Carbohydr Polym; 2017 Jan; 156():64-70. PubMed ID: 27842853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spray Drying Enzyme-Treated Cellulose Nanofibrils.
    Hwang S; Walker CC; Johnson D; Han Y; Gardner DJ
    Polymers (Basel); 2023 Oct; 15(20):. PubMed ID: 37896330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellulose and lignocellulose nanofibril suspensions and films: A comparison.
    Amini E; Hafez I; Tajvidi M; Bousfield DW
    Carbohydr Polym; 2020 Dec; 250():117011. PubMed ID: 33049872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.