These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 34641187)

  • 21. Fabrication of super-high transparent cellulose films with multifunctional performances via postmodification strategy.
    Qi Y; Lin S; Lan J; Zhan Y; Guo J; Shang J
    Carbohydr Polym; 2021 May; 260():117760. PubMed ID: 33712122
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrophobic cellulose films with excellent strength and toughness via ball milling activated acylation of microfibrillated cellulose.
    Deng S; Huang R; Zhou M; Chen F; Fu Q
    Carbohydr Polym; 2016 Dec; 154():129-38. PubMed ID: 27577904
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transparent cellulose/polyhedral oligomeric silsesquioxane nanocomposites with enhanced UV-shielding properties.
    Feng Y; Zhang J; He J; Zhang J
    Carbohydr Polym; 2016 Aug; 147():171-177. PubMed ID: 27178922
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improved Hydrophobic, UV Barrier and Antibacterial Properties of Multifunctional PVA Nanocomposite Films Reinforced with Modified Lignin Contained Cellulose Nanofibers.
    Li Y; Chen Y; Wu Q; Huang J; Zhao Y; Li Q; Wang S
    Polymers (Basel); 2022 Apr; 14(9):. PubMed ID: 35566875
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Facile preparation of cellulose/lignosulfonate derivatives composite films with high UV-shielding and gas barrier properties.
    Guo Y; You Y; Guo G; Chen Z; Peng W; Hu L; Liang S; Xie H
    Int J Biol Macromol; 2023 May; 237():124218. PubMed ID: 36990419
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation of Cellulose Films from Sustainable CO
    Jin L; Gan J; Hu G; Cai L; Li Z; Zhang L; Zheng Q; Xie H
    Polymers (Basel); 2019 Jun; 11(6):. PubMed ID: 31167448
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bionanocomposites of regenerated cellulose/zeolite prepared using environmentally benign ionic liquid solvent.
    Soheilmoghaddam M; Wahit MU; Tuck Whye W; Ibrahim Akos N; Heidar Pour R; Ali Yussuf A
    Carbohydr Polym; 2014 Jun; 106():326-34. PubMed ID: 24721086
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation and characterization of regenerated cellulose/poly (vinylidene fluoride) (PVDF) blend films.
    Zhang X; Feng J; Liu X; Zhu J
    Carbohydr Polym; 2012 Jun; 89(1):67-71. PubMed ID: 24750605
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transparent films by ionic liquid welding of cellulose nanofibers and polylactide: Enhanced biodegradability in marine environments.
    Niu X; Huan S; Li H; Pan H; Rojas OJ
    J Hazard Mater; 2021 Jan; 402():124073. PubMed ID: 33254838
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Antioxidant and UV-Blocking Leather-Inspired Nanocellulose-Based Films with High Wet Strength.
    Kriechbaum K; Bergström L
    Biomacromolecules; 2020 May; 21(5):1720-1728. PubMed ID: 31945294
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation of cellulose/polyvinyl alcohol biocomposite films using 1-n-butyl-3-methylimidazolium chloride.
    Abdulkhani A; Hojati Marvast E; Ashori A; Hamzeh Y; Karimi AN
    Int J Biol Macromol; 2013 Nov; 62():379-86. PubMed ID: 24076203
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The impact of packaging recyclable ability on environment: Case and scenario analysis of polypropylene express boxes and corrugated cartons.
    Guo X; Yao S; Wang Q; Zhao H; Zhao Y; Zeng F; Huo L; Xing H; Jiang Y; Lv Y
    Sci Total Environ; 2022 May; 822():153650. PubMed ID: 35124059
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recycling of Waste Cotton Textile Containing Elastane Fibers through Dissolution and Regeneration.
    Wang L; Huang S; Wang Y
    Membranes (Basel); 2022 Mar; 12(4):. PubMed ID: 35448324
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Review on Biodegradable Packaging Films from Vegetative and Food Waste.
    Gupta P; Toksha B; Rahaman M
    Chem Rec; 2022 Jul; 22(7):e202100326. PubMed ID: 35253984
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cellulose nanocrystals reinforced κ-carrageenan based UV resistant transparent bionanocomposite films for sustainable packaging applications.
    Yadav M; Chiu FC
    Carbohydr Polym; 2019 May; 211():181-194. PubMed ID: 30824078
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Facile in situ fabrication of ZnO-embedded cellulose nanocomposite films with antibacterial properties and enhanced mechanical strength via hydrogen bonding interactions.
    Li X; Li H; Wang X; Xu D; You T; Wu Y; Xu F
    Int J Biol Macromol; 2021 Jul; 183():760-771. PubMed ID: 33932418
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Packaging effects on shell egg breakage rates during simulated transportation.
    Seydim AC; Dawson PL
    Poult Sci; 1999 Jan; 78(1):148-51. PubMed ID: 10023763
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biodegradable Cellulose Film Prepared From Banana Pseudo-Stem Using an Ionic Liquid for Mango Preservation.
    Ai B; Zheng L; Li W; Zheng X; Yang Y; Xiao D; Shi J; Sheng Z
    Front Plant Sci; 2021; 12():625878. PubMed ID: 33679839
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermally-induced cellulose nanofibril films with near-complete ultraviolet-blocking and improved water resistance.
    Yang W; Gao Y; Zuo C; Deng Y; Dai H
    Carbohydr Polym; 2019 Nov; 223():115050. PubMed ID: 31426951
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Utilization of chemically treated municipal solid waste (spent coffee bean powder) as reinforcement in cellulose matrix for packaging applications.
    Thiagamani SMK; Nagarajan R; Jawaid M; Anumakonda V; Siengchin S
    Waste Manag; 2017 Nov; 69():445-454. PubMed ID: 28774586
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.