These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 34641202)
1. Modeling Brittle Fractures in Epoxy Nanocomposites Using Extended Finite Element and Cohesive Zone Surface Methods. Biswakarma JJS; Cruz DA; Bain ED; Dennis JM; Andzelm JW; Lustig SR Polymers (Basel); 2021 Oct; 13(19):. PubMed ID: 34641202 [TBL] [Abstract][Full Text] [Related]
2. A Hybrid Finite Volume and Extended Finite Element Method for Hydraulic Fracturing with Cohesive Crack Propagation in Quasi-Brittle Materials. Liu C; Shen Z; Gan L; Jin T; Zhang H; Liu D Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30304867 [TBL] [Abstract][Full Text] [Related]
3. A Particle-Based Cohesive Crack Model for Brittle Fracture Problems. Chen H; Zhang YX; Zhu L; Xiong F; Liu J; Gao W Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32823584 [TBL] [Abstract][Full Text] [Related]
4. Cortical bone fracture analysis using XFEM - case study. Idkaidek A; Jasiuk I Int J Numer Method Biomed Eng; 2017 Apr; 33(4):. PubMed ID: 27287280 [TBL] [Abstract][Full Text] [Related]
5. New perspective of fracture mechanics inspired by gap test with crack-parallel compression. Nguyen H; Pathirage M; Rezaei M; Issa M; Cusatis G; Bažant ZP Proc Natl Acad Sci U S A; 2020 Jun; 117(25):14015-14020. PubMed ID: 32518106 [TBL] [Abstract][Full Text] [Related]
6. Hydrogen-Assisted Brittle Fracture Behavior of Low Alloy 30CrMo Steel Based on the Combination of Experimental and Numerical Analyses. Li Y; Zhang K; Lu D; Zeng B Materials (Basel); 2021 Jul; 14(13):. PubMed ID: 34279281 [TBL] [Abstract][Full Text] [Related]
7. Modeling Cyclic Crack Propagation in Concrete Using the Scaled Boundary Finite Element Method Coupled with the Cumulative Damage-Plasticity Constitutive Law. Alrayes O; Könke C; Ooi ET; Hamdia KM Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676599 [TBL] [Abstract][Full Text] [Related]
8. Fracture characterization of human cortical bone under mode II loading using the end-notched flexure test. Silva FGA; de Moura MFSF; Dourado N; Xavier J; Pereira FAM; Morais JJL; Dias MIR; Lourenço PJ; Judas FM Med Biol Eng Comput; 2017 Aug; 55(8):1249-1260. PubMed ID: 27783311 [TBL] [Abstract][Full Text] [Related]
9. Quantitative Assessment of the Influence of Tensile Softening of Concrete in Beams under Bending by Numerical Simulations with XFEM and Cohesive Cracks. Marzec I; Bobiński J Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057342 [TBL] [Abstract][Full Text] [Related]
10. Nano-Level Damage Characterization of Graphene/Polymer Cohesive Interface under Tensile Separation. Koloor SSR; Rahimian-Koloor SM; Karimzadeh A; Hamdi M; Petrů M; Tamin MN Polymers (Basel); 2019 Sep; 11(9):. PubMed ID: 31480660 [TBL] [Abstract][Full Text] [Related]
11. Cohesive finite element modeling of age-related toughness loss in human cortical bone. Ural A; Vashishth D J Biomech; 2006; 39(16):2974-82. PubMed ID: 16375909 [TBL] [Abstract][Full Text] [Related]
12. Finite element prediction of proximal femur fracture pattern based on orthotropic behaviour law coupled to quasi-brittle damage. Hambli R; Bettamer A; Allaoui S Med Eng Phys; 2012 Mar; 34(2):202-10. PubMed ID: 21824797 [TBL] [Abstract][Full Text] [Related]
13. Fracture Toughness, Breakthrough Morphology, Microstructural Analysis of the T2 Copper-45 Steel Welded Joints. Ding H; Huang Q; Liu P; Bao Y; Chai G Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31968586 [TBL] [Abstract][Full Text] [Related]
14. A Comparative Study to Evaluate the Essential Work of Fracture to Measure the Fracture Toughness of Quasi-Brittle Material. Abdellah MY; Zuwawi AR; Azam SA; Hassan MK Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806639 [TBL] [Abstract][Full Text] [Related]
15. A Numerical Method for Applying Cohesive Stress on Fracture Process Zone in Concrete Using Nonlinear Spring Element. Li Z Materials (Basel); 2022 Feb; 15(3):. PubMed ID: 35161192 [TBL] [Abstract][Full Text] [Related]
16. Fracture Toughness and Fatigue Crack Growth Analyses on a Biomedical Ti-27Nb Alloy under Constant Amplitude Loading Using Extended Finite Element Modelling. Abdellah MY; Alharthi H Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374650 [TBL] [Abstract][Full Text] [Related]
17. Re-evaluating the toughness of human cortical bone. Yang QD; Cox BN; Nalla RK; Ritchie RO Bone; 2006 Jun; 38(6):878-87. PubMed ID: 16338188 [TBL] [Abstract][Full Text] [Related]
18. Calibration of a Cohesive Model for Fracture in Low Cross-Linked Epoxy Resins. Torres D; Guo S; Villar MP; Araujo D; Estevez R Polymers (Basel); 2018 Nov; 10(12):. PubMed ID: 30961246 [TBL] [Abstract][Full Text] [Related]
19. Sprain energy consequences for damage localization and fracture mechanics. Xu H; Nguyen AT; Bažant ZP Proc Natl Acad Sci U S A; 2024 Oct; 121(40):e2410668121. PubMed ID: 39325423 [TBL] [Abstract][Full Text] [Related]
20. Determination of Mechanical and Fracture Properties of Silicon Single Crystal from Indentation Experiments and Finite Element Modelling. Skalka P; Kotoul M Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832266 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]