BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 34641204)

  • 21. Novel Analytical Method for Mix Design and Performance Prediction of High Calcium Fly Ash Geopolymer Concrete.
    Gunasekara C; Atzarakis P; Lokuge W; Law DW; Setunge S
    Polymers (Basel); 2021 Mar; 13(6):. PubMed ID: 33804194
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanical Framework for Geopolymer Gels Construction: An Optimized LSTM Technique to Predict Compressive Strength of Fly Ash-Based Geopolymer Gels Concrete.
    Shi X; Chen S; Wang Q; Lu Y; Ren S; Huang J
    Gels; 2024 Feb; 10(2):. PubMed ID: 38391478
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Forecasting the strength of preplaced aggregate concrete using interpretable machine learning approaches.
    Javed MF; Fawad M; Lodhi R; Najeh T; Gamil Y
    Sci Rep; 2024 Apr; 14(1):8381. PubMed ID: 38600161
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Soft computing models to predict the compressive strength of GGBS/FA- geopolymer concrete.
    Ahmed HU; Mohammed AA; Mohammed A
    PLoS One; 2022; 17(5):e0265846. PubMed ID: 35613110
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predicting compressive strength of high-performance concrete with high volume ground granulated blast-furnace slag replacement using boosting machine learning algorithms.
    Rathakrishnan V; Bt Beddu S; Ahmed AN
    Sci Rep; 2022 Jun; 12(1):9539. PubMed ID: 35680937
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Statistical Methods for Modeling the Compressive Strength of Geopolymer Mortar.
    Ahmed HU; Abdalla AA; Mohammed AS; Mohammed AA; Mosavi A
    Materials (Basel); 2022 Mar; 15(5):. PubMed ID: 35269099
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploring the Use of Waste Marble Powder in Concrete and Predicting Its Strength with Different Advanced Algorithms.
    Khan K; Ahmad W; Amin MN; Ahmad A; Nazar S; Alabdullah AA; Arab AMA
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744167
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analyzing the Compressive Strength of Ceramic Waste-Based Concrete Using Experiment and Artificial Neural Network (ANN) Approach.
    Song H; Ahmad A; Ostrowski KA; Dudek M
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443041
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computation of High-Performance Concrete Compressive Strength Using Standalone and Ensembled Machine Learning Techniques.
    Xu Y; Ahmad W; Ahmad A; Ostrowski KA; Dudek M; Aslam F; Joyklad P
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832432
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Compressive Strength Evaluation of Ultra-High-Strength Concrete by Machine Learning.
    Shen Z; Deifalla AF; Kamiński P; Dyczko A
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629548
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Forecasting the Mechanical Properties of Plastic Concrete Employing Experimental Data Using Machine Learning Algorithms: DT, MLPNN, SVM, and RF.
    Nafees A; Khan S; Javed MF; Alrowais R; Mohamed AM; Mohamed A; Vatin NI
    Polymers (Basel); 2022 Apr; 14(8):. PubMed ID: 35458331
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Research on prediction of compressive strength of fly ash and slag mixed concrete based on machine learning.
    Wang M; Kang J; Liu W; Su J; Li M
    PLoS One; 2022; 17(12):e0279293. PubMed ID: 36574382
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Compressive Strength Estimation of Steel-Fiber-Reinforced Concrete and Raw Material Interactions Using Advanced Algorithms.
    Khan K; Ahmad W; Amin MN; Ahmad A; Nazar S; Alabdullah AA
    Polymers (Basel); 2022 Jul; 14(15):. PubMed ID: 35956580
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation and estimation of compressive strength of concrete masonry prism using gradient boosting algorithm.
    Ho LS; Tran VQ
    PLoS One; 2024; 19(3):e0297364. PubMed ID: 38442109
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prediction of the Compressive Strength of Fly Ash Geopolymer Concrete by an Optimised Neural Network Model.
    Khalaf AA; Kopecskó K; Merta I
    Polymers (Basel); 2022 Mar; 14(7):. PubMed ID: 35406295
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Application of Soft Computing Techniques to Predict the Strength of Geopolymer Composites.
    Wang Q; Ahmad W; Ahmad A; Aslam F; Mohamed A; Vatin NI
    Polymers (Basel); 2022 Mar; 14(6):. PubMed ID: 35335405
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Concrete compressive strength prediction modeling utilizing deep learning long short-term memory algorithm for a sustainable environment.
    Latif SD
    Environ Sci Pollut Res Int; 2021 Jun; 28(23):30294-30302. PubMed ID: 33590396
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deep learning-based prediction of compressive strength of eco-friendly geopolymer concrete.
    Tanyildizi H
    Environ Sci Pollut Res Int; 2024 Jun; 31(28):41246-41266. PubMed ID: 38844634
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Comparative Study for the Prediction of the Compressive Strength of Self-Compacting Concrete Modified with Fly Ash.
    Farooq F; Czarnecki S; Niewiadomski P; Aslam F; Alabduljabbar H; Ostrowski KA; Śliwa-Wieczorek K; Nowobilski T; Malazdrewicz S
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34501024
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In-Depth Analysis of Cement-Based Material Incorporating Metakaolin Using Individual and Ensemble Machine Learning Approaches.
    Bulbul AMR; Khan K; Nafees A; Amin MN; Ahmad W; Usman M; Nazar S; Arab AMA
    Materials (Basel); 2022 Nov; 15(21):. PubMed ID: 36363356
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.