These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 34641239)

  • 1. A Dynamically Correlated Network Model for the Collective Dynamics in Glass-Forming Molecular Liquids and Polymers.
    Sasaki T; Tsuzuki Y; Nakane T
    Polymers (Basel); 2021 Oct; 13(19):. PubMed ID: 34641239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thickness Dependence of Segmental Dynamics in Free-Standing Thin Films Predicted by a Dynamically Correlated Network Model.
    Nakane T; Sasaki T
    J Phys Chem B; 2023 Jun; 127(21):4896-4904. PubMed ID: 37201178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Do String-like Cooperative Motions Predict Relaxation Times in Glass-Forming Liquids?
    Hung JH; Simmons DS
    J Phys Chem B; 2020 Jan; 124(1):266-276. PubMed ID: 31886663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental test of a predicted dynamics-structure-thermodynamics connection in molecularly complex glass-forming liquids.
    Mei B; Zhou Y; Schweizer KS
    Proc Natl Acad Sci U S A; 2021 May; 118(18):. PubMed ID: 33903245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activated penetrant dynamics in glass forming liquids: size effects, decoupling, slaving, collective elasticity and correlation with matrix compressibility.
    Mei B; Schweizer KS
    Soft Matter; 2021 Mar; 17(9):2624-2639. PubMed ID: 33528485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rheology of supercooled P-Se glass-forming liquids: From networks to molecules and the emergence of power-law relaxation behavior.
    Yuan B; Aitken BG; Sen S
    J Chem Phys; 2022 Jun; 156(22):224502. PubMed ID: 35705407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple length and time scales of dynamic heterogeneities in model glass-forming liquids: a systematic analysis of multi-point and multi-time correlations.
    Kim K; Saito S
    J Chem Phys; 2013 Mar; 138(12):12A506. PubMed ID: 23556757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Universal localization transition accompanying glass formation: insights from efficient molecular dynamics simulations of diverse supercooled liquids.
    Hung JH; Patra TK; Meenakshisundaram V; Mangalara JH; Simmons DS
    Soft Matter; 2019 Feb; 15(6):1223-1242. PubMed ID: 30556082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Moderately and strongly supercooled liquids: a temperature-derivative study of the primary relaxation time scale.
    Kokshenev VB; Borges PD; Sullivan NS
    J Chem Phys; 2005 Mar; 122(11):114510. PubMed ID: 15836232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Does equilibrium polymerization describe the dynamic heterogeneity of glass-forming liquids?
    Douglas JF; Dudowicz J; Freed KF
    J Chem Phys; 2006 Oct; 125(14):144907. PubMed ID: 17042650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of the lignin glass transition.
    Vural D; Smith JC; Petridis L
    Phys Chem Chem Phys; 2018 Aug; 20(31):20504-20512. PubMed ID: 30046795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-temperature relaxation and entropic barriers in supercooled liquids.
    Mohanty U; Oppenheim I; Taubes CH
    Science; 1994 Oct; 266(5184):425-7. PubMed ID: 17816687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature Dependence of Structural Relaxation in Glass-Forming Liquids and Polymers.
    Novikov VN; Sokolov AP
    Entropy (Basel); 2022 Aug; 24(8):. PubMed ID: 36010765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of supercooled water in confined geometry.
    Bergman R; Swenson J
    Nature; 2000 Jan; 403(6767):283-6. PubMed ID: 10659841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. String-like collective motion and diffusion in the interfacial region of ice.
    Wang X; Tong X; Zhang H; Douglas JF
    J Chem Phys; 2017 Nov; 147(19):194508. PubMed ID: 29166091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short-Time Beta Relaxation in Glass-Forming Liquids Is Cooperative in Nature.
    Karmakar S; Dasgupta C; Sastry S
    Phys Rev Lett; 2016 Feb; 116(8):085701. PubMed ID: 26967425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics in inorganic glass-forming liquids by NMR spectroscopy.
    Sen S
    Prog Nucl Magn Reson Spectrosc; 2020 Feb; 116():155-176. PubMed ID: 32130956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relevance of Shear Transformations in the Relaxation of Supercooled Liquids.
    Lerbinger M; Barbot A; Vandembroucq D; Patinet S
    Phys Rev Lett; 2022 Nov; 129(19):195501. PubMed ID: 36399740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soft pinning: Experimental validation of static correlations in supercooled molecular glass-forming liquids.
    Das R; Bhowmik BP; Puthirath AB; Narayanan TN; Karmakar S
    PNAS Nexus; 2023 Sep; 2(9):pgad277. PubMed ID: 37680690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.