These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 34641284)

  • 41. Multiple linear regression model for predicting biomass digestibility from structural features.
    Zhu L; O'Dwyer JP; Chang VS; Granda CB; Holtzapple MT
    Bioresour Technol; 2010 Jul; 101(13):4971-9. PubMed ID: 19962880
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Formation and Identification of Lignin-Carbohydrate Complexes in Pre-hydrolysis Liquors.
    Feng N; She S; Tang F; Zhao X; Chen J; Wang P; Wu Q; Rojas OJ
    Biomacromolecules; 2023 Jun; 24(6):2541-2548. PubMed ID: 37264927
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structural characterization of lignin from triploid of Populus tomentosa Carr.
    Yuan TQ; Sun SN; Xu F; Sun RC
    J Agric Food Chem; 2011 Jun; 59(12):6605-15. PubMed ID: 21568341
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An aptamer highly specific to cellulose enables the analysis of the association of cellulose with matrix cell wall polymers in vitro and in muro.
    Głazowska S; Mravec J
    Plant J; 2021 Oct; 108(2):579-599. PubMed ID: 34314513
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanochemical deconstruction of lignocellulosic cell wall polymers with ball-milling.
    Liu H; Chen X; Ji G; Yu H; Gao C; Han L; Xiao W
    Bioresour Technol; 2019 Aug; 286():121364. PubMed ID: 31026715
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of reaction media concentration on the solubility and the chemical structure of lignin model compounds.
    Barakat A; Chabbert B; Cathala B
    Phytochemistry; 2007 Aug; 68(15):2118-25. PubMed ID: 17582447
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A 13C solid state nuclear magnetic resonance spectroscopic study of cork cell wall structure: the effect of suberin removal.
    Gil AM; Lopes M; Rocha J; Pascoal Neto C
    Int J Biol Macromol; 1997 Jul; 20(4):293-305. PubMed ID: 9253649
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structure and optical properties of plant cell wall bio-inspired materials: cellulose-lignin multilayer nanocomposites.
    Hambardzumyan A; Molinari M; Dumelie N; Foulon L; Habrant A; Chabbert B; Aguié-Béghin V
    C R Biol; 2011 Nov; 334(11):839-50. PubMed ID: 22078740
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparative study of lignin characteristics from wheat straw obtained by soda-AQ and kraft pretreatment and effect on the following enzymatic hydrolysis process.
    Yang H; Xie Y; Zheng X; Pu Y; Huang F; Meng X; Wu W; Ragauskas A; Yao L
    Bioresour Technol; 2016 May; 207():361-9. PubMed ID: 26897415
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Possible mechanisms for the generation of phenyl glycoside-type lignin-carbohydrate linkages in lignification with monolignol glucosides.
    Miyagawa Y; Tobimatsu Y; Lam PY; Mizukami T; Sakurai S; Kamitakahara H; Takano T
    Plant J; 2020 Sep; 104(1):156-170. PubMed ID: 32623768
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Facilitating the enzymatic saccharification of pulped bamboo residues by degrading the remained xylan and lignin-carbohydrates complexes.
    Huang C; He J; Li X; Min D; Yong Q
    Bioresour Technol; 2015 Sep; 192():471-7. PubMed ID: 26080104
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Study on near-infrared absorption mechanism of alkali lignin].
    Wu XS; Xie YM; Liu HB; Wu H
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Jun; 26(6):1031-3. PubMed ID: 16961223
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Quantification of wheat straw lignin structure by comprehensive NMR analysis.
    Zeng J; Helms GL; Gao X; Chen S
    J Agric Food Chem; 2013 Nov; 61(46):10848-57. PubMed ID: 24143908
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Refinement of the structures of cell-wall glucans of Schizosaccharomyces pombe by chemical modification and NMR spectroscopy.
    Sugawara T; Takahashi S; Osumi M; Ohno N
    Carbohydr Res; 2004 Sep; 339(13):2255-65. PubMed ID: 15337454
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structural variations of lignin and lignin-carbohydrate complexes from the fruit shells of Camellia oleifera during ripening.
    Cheng X; Ning R; Li P; Zhang F; Wang K; Jiang J
    Int J Biol Macromol; 2023 Dec; 253(Pt 3):126946. PubMed ID: 37722639
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of arabinoxylan-dehydrogenation polymer (synthetic lignin polymer) nanoparticles.
    Barakat A; Putaux JL; Saulnier L; Chabbert B; Cathala B
    Biomacromolecules; 2007 Apr; 8(4):1236-45. PubMed ID: 17341112
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Multi-analysis of chemical transformations of lignin macromolecules from waterlogged archaeological wood.
    Xia Y; Chen TY; Wen JL; Zhao YL; Qiu J; Sun RC
    Int J Biol Macromol; 2018 Apr; 109():407-416. PubMed ID: 29274420
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Quantification of terpene trilactones in Ginkgo biloba with a
    Liang T; Miyakawa T; Yang J; Ishikawa T; Tanokura M
    J Nat Med; 2018 Jun; 72(3):793-797. PubMed ID: 29569220
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Formation of macromolecular lignin in ginkgo xylem cell walls as observed by field emission scanning electron microscopy.
    Terashima N; Awano T; Takabe K; Yoshida M
    C R Biol; 2004; 327(9-10):903-10. PubMed ID: 15587081
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Native lignin structure of Miscanthus x giganteus and its changes during acetic and formic acid fractionation.
    Villaverde JJ; Li J; Ek M; Ligero P; de Vega A
    J Agric Food Chem; 2009 Jul; 57(14):6262-70. PubMed ID: 19552425
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.