These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 34641400)

  • 1. MetaClass, a Comprehensive Classification System for Predicting the Occurrence of Metabolic Reactions Based on the MetaQSAR Database.
    Mazzolari A; Scaccabarozzi A; Vistoli G; Pedretti A
    Molecules; 2021 Sep; 26(19):. PubMed ID: 34641400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MetaSpot: A General Approach for Recognizing the Reactive Atoms Undergoing Metabolic Reactions Based on the MetaQSAR Database.
    Mazzolari A; Perazzoni P; Sabato E; Lunghini F; Beccari AR; Vistoli G; Pedretti A
    Int J Mol Sci; 2023 Jul; 24(13):. PubMed ID: 37446241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MetaQSAR: An Integrated Database Engine to Manage and Analyze Metabolic Data.
    Pedretti A; Mazzolari A; Vistoli G; Testa B
    J Med Chem; 2018 Feb; 61(3):1019-1030. PubMed ID: 29244953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of UGT-mediated Metabolism Using the Manually Curated MetaQSAR Database.
    Mazzolari A; Afzal AM; Pedretti A; Testa B; Vistoli G; Bender A
    ACS Med Chem Lett; 2019 Apr; 10(4):633-638. PubMed ID: 30996809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MetaTREE, a Novel Database Focused on Metabolic Trees, Predicts an Important Detoxification Mechanism: The Glutathione Conjugation.
    Mazzolari A; Sommaruga L; Pedretti A; Vistoli G
    Molecules; 2021 Apr; 26(7):. PubMed ID: 33917533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting Intensive Care Unit Length of Stay and Mortality Using Patient Vital Signs: Machine Learning Model Development and Validation.
    Alghatani K; Ammar N; Rezgui A; Shaban-Nejad A
    JMIR Med Inform; 2021 May; 9(5):e21347. PubMed ID: 33949961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
    Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES
    Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of the Formation of Reactive Metabolites by A Novel Classifier Approach Based on Enrichment Factor Optimization (EFO) as Implemented in the VEGA Program.
    Mazzolari A; Vistoli G; Testa B; Pedretti A
    Molecules; 2018 Nov; 23(11):. PubMed ID: 30428514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiclassification Prediction of Enzymatic Reactions for Oxidoreductases and Hydrolases Using Reaction Fingerprints and Machine Learning Methods.
    Cai Y; Yang H; Li W; Liu G; Lee PW; Tang Y
    J Chem Inf Model; 2018 Jun; 58(6):1169-1181. PubMed ID: 29733642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational models for the prediction of adverse cardiovascular drug reactions.
    Jamal S; Ali W; Nagpal P; Grover S; Grover A
    J Transl Med; 2019 May; 17(1):171. PubMed ID: 31118067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning algorithms to predict early pregnancy loss after in vitro fertilization-embryo transfer with fetal heart rate as a strong predictor.
    Liu L; Jiao Y; Li X; Ouyang Y; Shi D
    Comput Methods Programs Biomed; 2020 Nov; 196():105624. PubMed ID: 32623348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A deep learning architecture for metabolic pathway prediction.
    Baranwal M; Magner A; Elvati P; Saldinger J; Violi A; Hero AO
    Bioinformatics; 2020 Apr; 36(8):2547-2553. PubMed ID: 31879763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate Prediction of Coronary Heart Disease for Patients With Hypertension From Electronic Health Records With Big Data and Machine-Learning Methods: Model Development and Performance Evaluation.
    Du Z; Yang Y; Zheng J; Li Q; Lin D; Li Y; Fan J; Cheng W; Chen XH; Cai Y
    JMIR Med Inform; 2020 Jul; 8(7):e17257. PubMed ID: 32628616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expert system for predicting reaction conditions: the Michael reaction case.
    Marcou G; Aires de Sousa J; Latino DA; de Luca A; Horvath D; Rietsch V; Varnek A
    J Chem Inf Model; 2015 Feb; 55(2):239-50. PubMed ID: 25588070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ToxiM: A Toxicity Prediction Tool for Small Molecules Developed Using Machine Learning and Chemoinformatics Approaches.
    Sharma AK; Srivastava GN; Roy A; Sharma VK
    Front Pharmacol; 2017; 8():880. PubMed ID: 29249969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparing Machine Learning Algorithms for Predicting Drug-Induced Liver Injury (DILI).
    Minerali E; Foil DH; Zorn KM; Lane TR; Ekins S
    Mol Pharm; 2020 Jul; 17(7):2628-2637. PubMed ID: 32422053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regio-selectivity prediction with a machine-learned reaction representation and on-the-fly quantum mechanical descriptors.
    Guan Y; Coley CW; Wu H; Ranasinghe D; Heid E; Struble TJ; Pattanaik L; Green WH; Jensen KF
    Chem Sci; 2020 Dec; 12(6):2198-2208. PubMed ID: 34163985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An algorithm for direct causal learning of influences on patient outcomes.
    Rathnam C; Lee S; Jiang X
    Artif Intell Med; 2017 Jan; 75():1-15. PubMed ID: 28363452
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.