These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 34641928)

  • 1. Development and validation of a radiomics-based model to predict local progression-free survival after chemo-radiotherapy in patients with esophageal squamous cell cancer.
    Luo HS; Chen YY; Huang WZ; Wu SX; Huang SF; Xu HY; Xue RL; Du ZS; Li XY; Lin LX; Huang HC
    Radiat Oncol; 2021 Oct; 16(1):201. PubMed ID: 34641928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A nomogram based on pretreatment CT radiomics features for predicting complete response to chemoradiotherapy in patients with esophageal squamous cell cancer.
    Luo HS; Huang SF; Xu HY; Li XY; Wu SX; Wu DH
    Radiat Oncol; 2020 Oct; 15(1):249. PubMed ID: 33121507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A nomogram based on pretreatment radiomics and dosiomics features for predicting overall survival associated with esophageal squamous cell cancer.
    Kawahara D; Nishioka R; Murakami Y; Emoto Y; Iwashita K; Sasaki R
    Eur J Surg Oncol; 2024 Jul; 50(7):108450. PubMed ID: 38843660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction and validation of classification models for predicting the response to concurrent chemo-radiotherapy of patients with esophageal squamous cell carcinoma based on multi-omics data.
    Li ZM; Liu W; Chen XL; Wu WZ; Xu XE; Chu MY; Yu SX; Li EM; Huang HC; Xu LY
    Clin Res Hepatol Gastroenterol; 2024 Apr; 48(4):102318. PubMed ID: 38471582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CT-based delta-radiomics nomogram to predict pathological complete response after neoadjuvant chemoradiotherapy in esophageal squamous cell carcinoma patients.
    Fan L; Yang Z; Chang M; Chen Z; Wen Q
    J Transl Med; 2024 Jun; 22(1):579. PubMed ID: 38890720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CT-based radiomics combined with hematologic parameters for survival prediction in locally advanced esophageal cancer patients receiving definitive chemoradiotherapy.
    Cui J; Zhang D; Gao Y; Duan J; Wang L; Li L; Yuan S
    Insights Imaging; 2024 Mar; 15(1):87. PubMed ID: 38523188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nomogram based on pretreatment hepatic and renal function indicators for survival prediction of locally advanced esophageal squamous cell carcinoma with treatment of neoadjuvant chemoradiotherapy plus surgery.
    Lin XW; Chen H; Xie XY; Liu CT; Lin YW; Xu YW; Wang XJ; Wu FC
    Updates Surg; 2024 Aug; 76(4):1377-1388. PubMed ID: 37957531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and Validation of a Radiomics Nomogram Model for Predicting Postoperative Recurrence in Patients With Esophageal Squamous Cell Cancer Who Achieved pCR After Neoadjuvant Chemoradiotherapy Followed by Surgery.
    Qiu Q; Duan J; Deng H; Han Z; Gu J; Yue NJ; Yin Y
    Front Oncol; 2020; 10():1398. PubMed ID: 32850451
    [No Abstract]   [Full Text] [Related]  

  • 9. Predicting response to CCRT for esophageal squamous carcinoma by a radiomics-clinical SHAP model.
    Cheng X; Zhang Y; Zhu M; Sun R; Liu L; Li X
    BMC Med Imaging; 2023 Oct; 23(1):145. PubMed ID: 37779188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CT-based radiomics nomogram may predict local recurrence-free survival in esophageal cancer patients receiving definitive chemoradiation or radiotherapy: A multicenter study.
    Gong J; Zhang W; Huang W; Liao Y; Yin Y; Shi M; Qin W; Zhao L
    Radiother Oncol; 2022 Sep; 174():8-15. PubMed ID: 35750106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and validation of a
    Liu H; Cui Y; Chang C; Zhou Z; Zhang Y; Ma C; Yin Y; Wang R
    BMC Cancer; 2024 Jan; 24(1):150. PubMed ID: 38291351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and validation of an [
    Takahashi N; Tanaka S; Umezawa R; Takanami K; Takeda K; Yamamoto T; Suzuki Y; Katsuta Y; Kadoya N; Jingu K
    Acta Oncol; 2023 Feb; 62(2):159-165. PubMed ID: 36794365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictive potential of preoperative Naples prognostic score-based nomogram model for the prognosis in surgical resected thoracic esophageal squamous cell carcinoma patients: A retrospective cohort study.
    Guo XW; Ji L; Xi XX; Zhao WW; Liu YC; Zhou SB; Ji SJ
    Medicine (Baltimore); 2024 May; 103(18):e38038. PubMed ID: 38701277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a Survival Nomogram for Esophageal Squamous Cell Carcinoma Patients: a Population-Based Analysis.
    Lu G; Fang W; Lin Y; Huang H
    J Gastrointest Cancer; 2024 Mar; 55(1):391-401. PubMed ID: 37804459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a nomogram based on long non-coding RNA to improve prognosis prediction of esophageal squamous cell carcinoma.
    Li W; Liu J; Zhao H
    Aging (Albany NY); 2020 Jan; 12(2):1512-1526. PubMed ID: 31978896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and Validation of a Nomogram for Predicting Overall Survival to Concurrent Chemoradiotherapy in Patients with Locally Advanced Esophageal Squamous Cell Carcinoma.
    Wang C; Cheng X; Jin L; Ren R; Wang S; Zheng A; Hao A; Zhou F; Zhang Y
    Biomed Res Int; 2022; 2022():6455555. PubMed ID: 35872847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of spleen radiomics model for predicting prognosis in esophageal squamous cell carcinoma patients receiving definitive radiotherapy.
    Guo L; Liu A; Geng X; Zhao Z; Nie Y; Wang L; Liu D; Li Y; Li Y; Li D; Wang Q; Li Z; Liu X; Li M
    Thorac Cancer; 2024 Apr; 15(12):947-964. PubMed ID: 38480505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short-term response might influence the treatment-related benefit of adjuvant chemotherapy after concurrent chemoradiotherapy for esophageal squamous cell carcinoma patients.
    Liu A; Wang Y; Wang X; Zhu L; Nie Y; Li M
    Radiat Oncol; 2021 Oct; 16(1):195. PubMed ID: 34600574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning models predict overall survival and progression free survival of non-surgical esophageal cancer patients with chemoradiotherapy based on CT image radiomics signatures.
    Cui Y; Li Z; Xiang M; Han D; Yin Y; Ma C
    Radiat Oncol; 2022 Dec; 17(1):212. PubMed ID: 36575480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CT radiomics features of meso-esophageal fat in predicting overall survival of patients with locally advanced esophageal squamous cell carcinoma treated by definitive chemoradiotherapy.
    Yan S; Li FP; Jian L; Zhu HT; Zhao B; Li XT; Shi YJ; Sun YS
    BMC Cancer; 2023 May; 23(1):477. PubMed ID: 37231388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.