These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34642001)

  • 1. Aircrew Actual vs. Prescriptive Sleep Schedules and Resulting Fatigue Estimates.
    Morris MB; Veksler BZ; Krusmark MA; Gaines AR; Jantscher HL; Gunzelmann G
    Aerosp Med Hum Perform; 2021 Oct; 92(10):806-814. PubMed ID: 34642001
    [No Abstract]   [Full Text] [Related]  

  • 2. Aircrew Fatigue Perceptions, Fatigue Mitigation Strategies, and Circadian Typology.
    Morris MB; Howland JP; Amaddio KM; Gunzelmann G
    Aerosp Med Hum Perform; 2020 Apr; 91(4):363-368. PubMed ID: 32493560
    [No Abstract]   [Full Text] [Related]  

  • 3. The Importance of Validating Sleep Behavior Models for Fatigue Management Software in Military Aviation.
    Paul MA; Hursh SR; Love RJ
    Mil Med; 2020 Dec; 185(11-12):e1986-e1991. PubMed ID: 32789473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatigue Incident Antecedents, Consequences, and Aviation Operational Risk Management Resources.
    Morris MB; Wiedbusch MD; Gunzelmann G
    Aerosp Med Hum Perform; 2018 Aug; 89(8):708-716. PubMed ID: 30020055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Large-Scale European Union Study of Aircrew Fatigue During Long Night and Disruptive Duties.
    Sallinen M; van Dijk H; Aeschbach D; Maij A; Åkerstedt T
    Aerosp Med Hum Perform; 2020 Aug; 91(8):628-635. PubMed ID: 32693870
    [No Abstract]   [Full Text] [Related]  

  • 6. A survey of aircrew fatigue in a sample of U.S. Army aviation personnel.
    Caldwell JA; Gilreath SR
    Aviat Space Environ Med; 2002 May; 73(5):472-80. PubMed ID: 12014607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predictive Biomathematical Modeling Compared to Objective Sleep During COVID-19 Humanitarian Flights.
    Devine JK; Garcia CR; Simoes AS; Guelere MR; de Godoy B; Silva DS; Pacheco PC; Choynowski J; Hursh SR
    Aerosp Med Hum Perform; 2022 Jan; 93(1):4-12. PubMed ID: 35063050
    [No Abstract]   [Full Text] [Related]  

  • 8. Preparing Safety Cases for Operating Outside Prescriptive Fatigue Risk Management Regulations.
    Gander P; Mangie J; Wu L; van den Berg M; Signal L; Phillips A
    Aerosp Med Hum Perform; 2017 Jul; 88(7):688-696. PubMed ID: 28641687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Equivalence Testing as a Tool for Fatigue Risk Management in Aviation.
    Wu LJ; Gander PH; van den Berg M; Signal TL
    Aerosp Med Hum Perform; 2018 Apr; 89(4):383-388. PubMed ID: 29562969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CC130 pilot fatigue during re-supply missions to former Yugoslavia.
    Paul MA; Pigeau RA; Weinberg H
    Aviat Space Environ Med; 2001 Nov; 72(11):965-73. PubMed ID: 11718516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Malaria Prophylaxis Adherence Among Aircrew Members.
    Rutherford AE; Yale RS; Finn MF
    Aerosp Med Hum Perform; 2019 Jul; 90(7):643-646. PubMed ID: 31227039
    [No Abstract]   [Full Text] [Related]  

  • 12. Fatigue countermeasures in aviation.
    Caldwell JA; Mallis MM; Caldwell JL; Paul MA; Miller JC; Neri DF;
    Aviat Space Environ Med; 2009 Jan; 80(1):29-59. PubMed ID: 19180856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatigue-Related Aviation Mishaps.
    Gaines AR; Morris MB; Gunzelmann G
    Aerosp Med Hum Perform; 2020 May; 91(5):440-447. PubMed ID: 32327018
    [No Abstract]   [Full Text] [Related]  

  • 14. Fatigue and stimulant use in military fighter aircrew during combat operations.
    Gore RK; Webb TS; Hermes ED
    Aviat Space Environ Med; 2010 Aug; 81(8):719-27. PubMed ID: 20681231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of long and short simulated flights on the saccadic eye movement velocity of aviators.
    Di Stasi LL; McCamy MB; Martinez-Conde S; Gayles E; Hoare C; Foster M; Catena A; Macknik SL
    Physiol Behav; 2016 Jan; 153():91-6. PubMed ID: 26597121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acute and cumulative effects of scheduling on aircrew fatigue in ultra-short-haul operations.
    Åkerstedt T; Klemets T; Karlsson D; Häbel H; Widman L; Sallinen M
    J Sleep Res; 2021 Oct; 30(5):e13305. PubMed ID: 33631838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sleep and sleepiness of pilots operating long-range airplane emergency medical missions.
    Amann U; Holmes A; Caldwell J; Hilditch C
    Aviat Space Environ Med; 2014 Sep; 85(9):954-9. PubMed ID: 25197895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cardiac Autonomic Activity in Commercial Aircrew During an Actual Flight Duty Period.
    Goffeng EM; Nordby KC; Tarvainen M; Järvelin-Pasanen S; Wagstaff A; Skare Ø; Lie JA
    Aerosp Med Hum Perform; 2019 Nov; 90(11):945-952. PubMed ID: 31666156
    [No Abstract]   [Full Text] [Related]  

  • 19. Fatigue Risk Management Preferences for Consumer Sleep Technologies and Data Sharing in Aviation.
    Devine JK; Choynowski J; Hursh SR
    Aerosp Med Hum Perform; 2024 May; 95(5):265-272. PubMed ID: 38715267
    [No Abstract]   [Full Text] [Related]  

  • 20. Pilot In-Flight Sleep During Long-Range and Ultra-Long Range Commercial Airline Flights.
    Rempe MJ; Basiarz E; Rasmussen I; Belenky G; Lamp A
    Aerosp Med Hum Perform; 2022 Apr; 93(4):368-375. PubMed ID: 35354516
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.