These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 34642360)

  • 1. Machine learning enabling prediction of the bond dissociation enthalpy of hypervalent iodine from SMILES.
    Nakajima M; Nemoto T
    Sci Rep; 2021 Oct; 11(1):20207. PubMed ID: 34642360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A big data approach to the ultra-fast prediction of DFT-calculated bond energies.
    Qu X; Latino DA; Aires-de-Sousa J
    J Cheminform; 2013; 5():34. PubMed ID: 23849655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting bond dissociation energies of cyclic hypervalent halogen reagents using DFT calculations and graph attention network model.
    Shao Y; Ren Z; Han Z; Chen L; Li Y; Xue XS
    Beilstein J Org Chem; 2024; 20():1444-1452. PubMed ID: 38952960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A promising tool to achieve chemical accuracy for density functional theory calculations on Y-NO homolysis bond dissociation energies.
    Li HZ; Hu LH; Tao W; Gao T; Li H; Lu YH; Su ZM
    Int J Mol Sci; 2012; 13(7):8051-8070. PubMed ID: 22942689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost.
    St John PC; Guan Y; Kim Y; Kim S; Paton RS
    Nat Commun; 2020 May; 11(1):2328. PubMed ID: 32393773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation of Electron-Deficient Phenols Mediated by Hypervalent Iodine(V) Reagents: Fundamental Mechanistic Features Revealed by a Density Functional Theory-Based Investigation.
    Jalali M; Bissember AC; Yates BF; Wengryniuk SE; Ariafard A
    J Org Chem; 2021 Sep; 86(17):12237-12246. PubMed ID: 34410728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine Learning to Predict Homolytic Dissociation Energies of C-H Bonds: Calibration of DFT-based Models with Experimental Data.
    Li W; Luan Y; Zhang Q; Aires-de-Sousa J
    Mol Inform; 2023 Jan; 42(1):e2200193. PubMed ID: 36167940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using Machine Learning to Predict the Dissociation Energy of Organic Carbonyls.
    Yu H; Wang Y; Wang X; Zhang J; Ye S; Huang Y; Luo Y; Sharman E; Chen S; Jiang J
    J Phys Chem A; 2020 May; 124(19):3844-3850. PubMed ID: 32315178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving the accuracy of Density Functional Theory (DFT) calculation for homolysis bond dissociation energies of Y-NO bond: generalized regression neural network based on grey relational analysis and principal component analysis.
    Li HZ; Tao W; Gao T; Li H; Lu YH; Su ZM
    Int J Mol Sci; 2011; 12(4):2242-61. PubMed ID: 21731439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Knowledge-based BERT: a method to extract molecular features like computational chemists.
    Wu Z; Jiang D; Wang J; Zhang X; Du H; Pan L; Hsieh CY; Cao D; Hou T
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35438145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DFT studies of trans and cis influences in the homolysis of the Co-C bond in models of the alkylcobalamins.
    Govender PP; Navizet I; Perry CB; Marques HM
    J Phys Chem A; 2013 Apr; 117(14):3057-68. PubMed ID: 23510290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A machine learning correction for DFT non-covalent interactions based on the S22, S66 and X40 benchmark databases.
    Gao T; Li H; Li W; Li L; Fang C; Li H; Hu L; Lu Y; Su ZM
    J Cheminform; 2016; 8():24. PubMed ID: 27148408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Benchmark DFT studies on C-CN homolytic cleavage and screening the substitution effect on bond dissociation energy.
    Kosar N; Ayub K; Gilani MA; Mahmood T
    J Mol Model; 2019 Jan; 25(2):47. PubMed ID: 30690660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient machine learning model for predicting drug-target interactions with case study for Covid-19.
    El-Behery H; Attia AF; El-Feshawy N; Torkey H
    Comput Biol Chem; 2021 Aug; 93():107536. PubMed ID: 34271420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Importance of Engineered and Learned Molecular Representations in Predicting Organic Reactivity, Selectivity, and Chemical Properties.
    Gallegos LC; Luchini G; St John PC; Kim S; Paton RS
    Acc Chem Res; 2021 Feb; 54(4):827-836. PubMed ID: 33534534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of substituent effect on O-C bond dissociation enthalpy of methoxy group in meta- and para-substituted anisoles.
    Biela M; Kleinová A; Uhliar M; Klein E
    J Mol Graph Model; 2023 Jul; 122():108465. PubMed ID: 37062128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate Prediction of Coronary Heart Disease for Patients With Hypertension From Electronic Health Records With Big Data and Machine-Learning Methods: Model Development and Performance Evaluation.
    Du Z; Yang Y; Zheng J; Li Q; Lin D; Li Y; Fan J; Cheng W; Chen XH; Cai Y
    JMIR Med Inform; 2020 Jul; 8(7):e17257. PubMed ID: 32628616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BonDNet: a graph neural network for the prediction of bond dissociation energies for charged molecules.
    Wen M; Blau SM; Spotte-Smith EWC; Dwaraknath S; Persson KA
    Chem Sci; 2020 Dec; 12(5):1858-1868. PubMed ID: 34163950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water effect on the o-h dissociation enthalpy of para-substituted phenols: a DFT study.
    Guerra M; Amorati R; Pedulli GF
    J Org Chem; 2004 Aug; 69(16):5460-7. PubMed ID: 15287797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leveraging DFT and Molecular Fragmentation for Chemically Accurate p
    Sanchez AJ; Maier S; Raghavachari K
    J Chem Inf Model; 2024 Feb; 64(3):712-723. PubMed ID: 38301279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.