These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 34642404)
1. A pyramidal deep learning pipeline for kidney whole-slide histology images classification. Abdeltawab H; Khalifa F; Ghazal M; Cheng L; Gondim D; El-Baz A Sci Rep; 2021 Oct; 11(1):20189. PubMed ID: 34642404 [TBL] [Abstract][Full Text] [Related]
2. A deep learning framework for automated classification of histopathological kidney whole-slide images. Abdeltawab HA; Khalifa FA; Ghazal MA; Cheng L; El-Baz AS; Gondim DD J Pathol Inform; 2022; 13():100093. PubMed ID: 36268061 [TBL] [Abstract][Full Text] [Related]
3. Automated classification of solid renal masses on contrast-enhanced computed tomography images using convolutional neural network with decision fusion. Zabihollahy F; Schieda N; Krishna S; Ukwatta E Eur Radiol; 2020 Sep; 30(9):5183-5190. PubMed ID: 32350661 [TBL] [Abstract][Full Text] [Related]
4. Development of a Histopathology Informatics Pipeline for Classification and Prediction of Clinical Outcomes in Subtypes of Renal Cell Carcinoma. Marostica E; Barber R; Denize T; Kohane IS; Signoretti S; Golden JA; Yu KH Clin Cancer Res; 2021 May; 27(10):2868-2878. PubMed ID: 33722896 [TBL] [Abstract][Full Text] [Related]
5. Deep learning and radiomics: the utility of Google TensorFlowâ„¢ Inception in classifying clear cell renal cell carcinoma and oncocytoma on multiphasic CT. Coy H; Hsieh K; Wu W; Nagarajan MB; Young JR; Douek ML; Brown MS; Scalzo F; Raman SS Abdom Radiol (NY); 2019 Jun; 44(6):2009-2020. PubMed ID: 30778739 [TBL] [Abstract][Full Text] [Related]
6. Pan-Renal Cell Carcinoma classification and survival prediction from histopathology images using deep learning. Tabibu S; Vinod PK; Jawahar CV Sci Rep; 2019 Jul; 9(1):10509. PubMed ID: 31324828 [TBL] [Abstract][Full Text] [Related]
7. Development and Validation of a Deep-learning Model to Assist With Renal Cell Carcinoma Histopathologic Interpretation. Fenstermaker M; Tomlins SA; Singh K; Wiens J; Morgan TM Urology; 2020 Oct; 144():152-157. PubMed ID: 32711010 [TBL] [Abstract][Full Text] [Related]
8. Development and evaluation of a deep neural network for histologic classification of renal cell carcinoma on biopsy and surgical resection slides. Zhu M; Ren B; Richards R; Suriawinata M; Tomita N; Hassanpour S Sci Rep; 2021 Mar; 11(1):7080. PubMed ID: 33782535 [TBL] [Abstract][Full Text] [Related]
9. Clinical use of a machine learning histopathological image signature in diagnosis and survival prediction of clear cell renal cell carcinoma. Chen S; Zhang N; Jiang L; Gao F; Shao J; Wang T; Zhang E; Yu H; Wang X; Zheng J Int J Cancer; 2021 Feb; 148(3):780-790. PubMed ID: 32895914 [TBL] [Abstract][Full Text] [Related]
10. Deep feature classification of angiomyolipoma without visible fat and renal cell carcinoma in abdominal contrast-enhanced CT images with texture image patches and hand-crafted feature concatenation. Lee H; Hong H; Kim J; Jung DC Med Phys; 2018 Apr; 45(4):1550-1561. PubMed ID: 29474742 [TBL] [Abstract][Full Text] [Related]
11. TGMIL: A hybrid multi-instance learning model based on the Transformer and the Graph Attention Network for whole-slide images classification of renal cell carcinoma. Sun X; Li W; Fu B; Peng Y; He J; Wang L; Yang T; Meng X; Li J; Wang J; Huang P; Wang R Comput Methods Programs Biomed; 2023 Dec; 242():107789. PubMed ID: 37722310 [TBL] [Abstract][Full Text] [Related]
12. Automated Renal Cancer Grading Using Nuclear Pleomorphic Patterns. Holdbrook DA; Singh M; Choudhury Y; Kalaw EM; Koh V; Tan HS; Kanesvaran R; Tan PH; Peng JYS; Tan MH; Lee HK JCO Clin Cancer Inform; 2018 Dec; 2():1-12. PubMed ID: 30652593 [TBL] [Abstract][Full Text] [Related]
13. Development and Evaluation of a Novel Deep-Learning-Based Framework for the Classification of Renal Histopathology Images. Abu Haeyeh Y; Ghazal M; El-Baz A; Talaat IM Bioengineering (Basel); 2022 Aug; 9(9):. PubMed ID: 36134972 [TBL] [Abstract][Full Text] [Related]
14. Improving CNNs classification with pathologist-based expertise: the renal cell carcinoma case study. Ponzio F; Descombes X; Ambrosetti D Sci Rep; 2023 Sep; 13(1):15887. PubMed ID: 37741835 [TBL] [Abstract][Full Text] [Related]
15. Pixel-to-Pixel Learning With Weak Supervision for Single-Stage Nucleus Recognition in Ki67 Images. Xing F; Cornish TC; Bennett T; Ghosh D; Yang L IEEE Trans Biomed Eng; 2019 Nov; 66(11):3088-3097. PubMed ID: 30802845 [TBL] [Abstract][Full Text] [Related]
16. Deep learning with a convolutional neural network model to differentiate renal parenchymal tumors: a preliminary study. Zheng Y; Wang S; Chen Y; Du HQ Abdom Radiol (NY); 2021 Jul; 46(7):3260-3268. PubMed ID: 33656574 [TBL] [Abstract][Full Text] [Related]
17. The Classification of Renal Cancer in 3-Phase CT Images Using a Deep Learning Method. Han S; Hwang SI; Lee HJ J Digit Imaging; 2019 Aug; 32(4):638-643. PubMed ID: 31098732 [TBL] [Abstract][Full Text] [Related]
18. DeepSurvNet: deep survival convolutional network for brain cancer survival rate classification based on histopathological images. Zadeh Shirazi A; Fornaciari E; Bagherian NS; Ebert LM; Koszyca B; Gomez GA Med Biol Eng Comput; 2020 May; 58(5):1031-1045. PubMed ID: 32124225 [TBL] [Abstract][Full Text] [Related]
19. Deep Learning to Distinguish Benign from Malignant Renal Lesions Based on Routine MR Imaging. Xi IL; Zhao Y; Wang R; Chang M; Purkayastha S; Chang K; Huang RY; Silva AC; Vallières M; Habibollahi P; Fan Y; Zou B; Gade TP; Zhang PJ; Soulen MC; Zhang Z; Bai HX; Stavropoulos SW Clin Cancer Res; 2020 Apr; 26(8):1944-1952. PubMed ID: 31937619 [TBL] [Abstract][Full Text] [Related]