These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 34642522)

  • 21. Tooth morphology elucidates shark evolution across the end-Cretaceous mass extinction.
    Bazzi M; Campione NE; Ahlberg PE; Blom H; Kear BP
    PLoS Biol; 2021 Aug; 19(8):e3001108. PubMed ID: 34375335
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Manta-like planktivorous sharks in Late Cretaceous oceans.
    Vullo R; Frey E; Ifrim C; González González MA; Stinnesbeck ES; Stinnesbeck W
    Science; 2021 Mar; 371(6535):1253-1256. PubMed ID: 33737486
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Articulated remains of the extinct shark Ptychodus (Elasmobranchii, Ptychodontidae) from the Upper Cretaceous of Spain provide insights into gigantism, growth rate and life history of ptychodontid sharks.
    Jambura PL; Kriwet J
    PLoS One; 2020; 15(4):e0231544. PubMed ID: 32320430
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A diverse assemblage of
    Amadori M; Kovalchuk O; Barkaszi Z; Giusberti L; Kindlimann R; Kriwet J
    Cretac Res; 2023 Nov; 151():105659. PubMed ID: 38798738
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three-dimensional mapping of mineral in intact shark centra with energy dispersive x-ray diffraction.
    Park JS; Chen H; James KC; Natanson LJ; Stock SR
    J Mech Behav Biomed Mater; 2022 Dec; 136():105506. PubMed ID: 36228402
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Labial cartilages in the smalltooth sandtiger shark, Odontaspis ferox (lamniformes: odontaspididae) and their significance to the phylogeny of lamniform sharks.
    Shimada K; Rigsby CK; Kim SH
    Anat Rec (Hoboken); 2009 Jun; 292(6):813-7. PubMed ID: 19462448
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Feeding ecology has shaped the evolution of modern sharks.
    Bazzi M; Campione NE; Kear BP; Pimiento C; Ahlberg PE
    Curr Biol; 2021 Dec; 31(23):5138-5148.e4. PubMed ID: 34614390
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A new species of
    Ebersole JA; Ehret DJ
    PeerJ; 2018; 6():e4229. PubMed ID: 29333348
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development and microstructure of tooth histotypes in the blue shark, Prionace glauca (Carcharhiniformes: Carcharhinidae) and the great white shark, Carcharodon carcharias (Lamniformes: Lamnidae).
    Moyer JK; Riccio ML; Bemis WE
    J Morphol; 2015 Jul; 276(7):797-817. PubMed ID: 25845614
    [TBL] [Abstract][Full Text] [Related]  

  • 30. First shark from the Late Devonian (Frasnian) Gogo Formation, Western Australia sheds new light on the development of tessellated calcified cartilage.
    Long JA; Burrow CJ; Ginter M; Maisey JG; Trinajstic KM; Coates MI; Young GC; Senden TJ
    PLoS One; 2015; 10(5):e0126066. PubMed ID: 26020788
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Climate cooling and clade competition likely drove the decline of lamniform sharks.
    Condamine FL; Romieu J; Guinot G
    Proc Natl Acad Sci U S A; 2019 Oct; 116(41):20584-20590. PubMed ID: 31548392
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Denticle-embedded ampullary organs in a Cretaceous shark provide unique insight into the evolution of elasmobranch electroreceptors.
    Vullo R; Guinot G
    Naturwissenschaften; 2015 Oct; 102(9-10):65. PubMed ID: 26420508
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A gigantic shark from the lower cretaceous duck creek formation of Texas.
    Frederickson JA; Schaefer SN; Doucette-Frederickson JA
    PLoS One; 2015; 10(6):e0127162. PubMed ID: 26039066
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New Carcharhiniform Sharks (Chondrichthyes, Elasmobranchii) from the Early to Middle Eocene of Seymour Island, Antarctic Peninsula.
    Engelbrecht A; Mörs T; Reguero MA; Kriwet J
    J Vertebr Paleontol; 2017; 27(6):e1371724. PubMed ID: 29551850
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Skeletal convergence in thunniform sharks, ichthyosaurs, whales, and tunas, and its possible ecological links through the marine ecosystem evolution.
    Motani R; Shimada K
    Sci Rep; 2023 Oct; 13(1):16664. PubMed ID: 37794094
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Jaw mechanics in macrophagous lamniform sharks and their evolutionary and functional implications.
    Tanoue K; Shimada K
    Anat Rec (Hoboken); 2023 Feb; 306(2):311-325. PubMed ID: 36059141
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioapatite in shark centra studied by wide-angle and by small-angle X-ray scattering.
    Park JS; Almer JD; James KC; Natanson LJ; Stock SR
    J R Soc Interface; 2022 Sep; 19(194):20220373. PubMed ID: 36128705
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anatomy and evolution of heterocercal tail in lamniform sharks.
    Kim SH; Shimada K; Rigsby CK
    Anat Rec (Hoboken); 2013 Mar; 296(3):433-42. PubMed ID: 23381874
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Late Cretaceous coprolite from the Opole area (southern Poland) as evidence for a variable diet in shell-crushing shark
    Mazurek D; Antczak M
    PeerJ; 2023; 11():e16598. PubMed ID: 38111662
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Are shark teeth proxies for functional traits? A framework to infer ecology from the fossil record.
    Cooper JA; Griffin JN; Kindlimann R; Pimiento C
    J Fish Biol; 2023 Oct; 103(4):798-814. PubMed ID: 36651356
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.