BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 34642822)

  • 1. Promoting the anode performance of microbial fuel cells with nano-molybdenum disulfide/carbon nanotubes composite catalyst.
    Guo W; Li X; Cui L; Li Y; Zhang H; Ni T
    Bioprocess Biosyst Eng; 2022 Jan; 45(1):159-170. PubMed ID: 34642822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nano-hydroxyapatite/carbon nanotube: An excellent anode modifying material for improving the power output and diclofenac sodium removal of microbial fuel cells.
    Guo W; Chen Y; Cui L; Xu N; Wang M; Sun Y; Yan Y
    Bioelectrochemistry; 2023 Dec; 154():108523. PubMed ID: 37478753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nano-molybdenum carbide/carbon nanotubes composite as bifunctional anode catalyst for high-performance Escherichia coli-based microbial fuel cell.
    Wang Y; Li B; Cui D; Xiang X; Li W
    Biosens Bioelectron; 2014 Jan; 51():349-55. PubMed ID: 23994845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the power generation of microbial fuel cells by modifying the anode with single-wall carbon nanohorns.
    Yang J; Cheng S; Sun Y; Li C
    Biotechnol Lett; 2017 Oct; 39(10):1515-1520. PubMed ID: 28664313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction and performance evaluation of mediator-less microbial fuel cell using carbon nanotubes as an anode material.
    Roh SH; Kim SI
    J Nanosci Nanotechnol; 2012 May; 12(5):4252-5. PubMed ID: 22852384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchically Porous N-Doped Carbon Nanotubes/Reduced Graphene Oxide Composite for Promoting Flavin-Based Interfacial Electron Transfer in Microbial Fuel Cells.
    Wu X; Qiao Y; Shi Z; Tang W; Li CM
    ACS Appl Mater Interfaces; 2018 Apr; 10(14):11671-11677. PubMed ID: 29557635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyaniline/Carbon Nanotubes Composite Modified Anode via Graft Polymerization and Self-Assembling for Microbial Fuel Cells.
    Wu W; Niu H; Yang D; Wang S; Jiang N; Wang J; Lin J; Hu C
    Polymers (Basel); 2018 Jul; 10(7):. PubMed ID: 30960684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical micro/nano structures of carbon composites as anodes for microbial fuel cells.
    Zhao Y; Watanabe K; Hashimoto K
    Phys Chem Chem Phys; 2011 Sep; 13(33):15016-21. PubMed ID: 21785787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of different chemical treatments of brush and flat carbon electrodes to improve performance of microbial fuel cells.
    Fonseca EU; Yang W; Wang X; Rossi R; Logan BE
    Bioresour Technol; 2021 Dec; 342():125932. PubMed ID: 34543819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative study of graphene-coated stainless steel fiber felt and carbon cloth as anodes in MFCs.
    Hou J; Liu Z; Li Y; Yang S; Zhou Y
    Bioprocess Biosyst Eng; 2015 May; 38(5):881-8. PubMed ID: 25428842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical MoS2 tubular structures internally wired by carbon nanotubes as a highly stable anode material for lithium-ion batteries.
    Chen YM; Yu XY; Li Z; Paik U; Lou XW
    Sci Adv; 2016 Jul; 2(7):e1600021. PubMed ID: 27453938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boosting the anode performance of microbial fuel cells with a bacteria-derived biological iron oxide/carbon nanocomposite catalyst.
    Yang Q; Yang S; Liu G; Zhou B; Yu X; Yin Y; Yang J; Zhao H
    Chemosphere; 2021 Apr; 268():128800. PubMed ID: 33143885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sustainable design of high-performance microsized microbial fuel cell with carbon nanotube anode and air cathode.
    Mink JE; Hussain MM
    ACS Nano; 2013 Aug; 7(8):6921-7. PubMed ID: 23899322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D Hierarchical Co
    Wang Y; Cheng X; Liu K; Dai X; Qi J; Ma Z; Qiu Y; Liu S
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):35809-35821. PubMed ID: 35912639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing microbial fuel cell performance using anode modified with Fe
    Zheng X; Hou S; Amanze C; Zeng Z; Zeng W
    Bioprocess Biosyst Eng; 2022 May; 45(5):877-890. PubMed ID: 35166901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ni3Mo3C as anode catalyst for high-performance microbial fuel cells.
    Zeng LZ; Zhao SF; Li WS
    Appl Biochem Biotechnol; 2015 Mar; 175(5):2637-46. PubMed ID: 25547817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Analysis and Characterization of Multi-modified Anodes via Nitric Acid and PPy/AQDS in Microbial Fuel Cells].
    Shen WH; Zhu NW; Yin FH; Wu PX; Zhang YH
    Huan Jing Ke Xue; 2016 Sep; 37(9):3488-3497. PubMed ID: 29964785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved power generation using nitrogen-doped 3D graphite foam anodes in microbial fuel cells.
    Guo W; Chao S; Chen Q
    Bioprocess Biosyst Eng; 2020 Jan; 43(1):143-151. PubMed ID: 31535224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon Nanotube Composite Electrode Coated with Polypyrrole for Microbial Fuel Cell Application.
    Roh SH; Woo HG
    J Nanosci Nanotechnol; 2015 Jan; 15(1):484-7. PubMed ID: 26328387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of polyacrylonitrile-carbon nanotubes composite on carbon cloth as electrode material for microbial fuel cells.
    Kim SI; Lee JW; Roh SH
    J Nanosci Nanotechnol; 2011 Feb; 11(2):1364-7. PubMed ID: 21456189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.