BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 34642882)

  • 1. Permanganate oxidation of polycyclic aromatic compounds (PAHs and polar PACs): column experiments with DNAPL at residual saturation.
    Johansson C; Bataillard P; Biache C; Lorgeoux C; Colombano S; Joubert A; Défarge C; Faure P
    Environ Sci Pollut Res Int; 2022 Mar; 29(11):15966-15982. PubMed ID: 34642882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ferrate
    Johansson C; Bataillard P; Biache C; Lorgeoux C; Colombano S; Joubert A; Pigot T; Faure P
    Environ Sci Pollut Res Int; 2020 Jan; 27(1):704-716. PubMed ID: 31808080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fenton-like and potassium permanganate oxidations of PAH-contaminated soils: Impact of oxidant doses on PAH and polar PAC (polycyclic aromatic compound) behavior.
    Boulangé M; Lorgeoux C; Biache C; Saada A; Faure P
    Chemosphere; 2019 Jun; 224():437-444. PubMed ID: 30831494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aging as the main factor controlling PAH and polar-PAC (polycyclic aromatic compound) release mechanisms in historically coal-tar-contaminated soils.
    Boulangé M; Lorgeoux C; Biache C; Michel J; Michels R; Faure P
    Environ Sci Pollut Res Int; 2019 Jan; 26(2):1693-1705. PubMed ID: 30448950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNAPL remediation with in situ chemical oxidation using potassium permanganate. II. Increasing removal efficiency by dissolving Mn oxide precipitates.
    Li XD; Schwartz FW
    J Contam Hydrol; 2004 Feb; 68(3-4):269-87. PubMed ID: 14734249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lowering temperature to increase chemical oxidation efficiency: the effect of temperature on permanganate oxidation rates of five types of well defined organic matter, two natural soils, and three pure phase products.
    de Weert JP; Keijzer TJ; van Gaans PF
    Chemosphere; 2014 Dec; 117():94-103. PubMed ID: 24974015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intermediate-scale 2D experimental investigation of in situ chemical oxidation using potassium permanganate for remediation of complex DNAPL source zones.
    Heiderscheidt JL; Siegrist RL; Illangasekare TH
    J Contam Hydrol; 2008 Nov; 102(1-2):3-16. PubMed ID: 18774622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-situ oxidation of trichloroethene by permanganate: effects on porous medium hydraulic properties.
    Schroth MH; Oostrom M; Wietsma TW; Istok JD
    J Contam Hydrol; 2001 Jul; 50(1-2):79-98. PubMed ID: 11475162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of various chemical oxidation reagents on soil indigenous microbial diversity in remediation of soil contaminated by PAHs.
    Liao X; Wu Z; Li Y; Cao H; Su C
    Chemosphere; 2019 Jul; 226():483-491. PubMed ID: 30951943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mass removal of chlorinated ethenes from rough-walled fractures using permanganate.
    Tunnicliffe BS; Thomson NR
    J Contam Hydrol; 2004 Nov; 75(1-2):91-114. PubMed ID: 15385100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geochemical effects on metals following permanganate oxidation of DNAPLs.
    Crimi ML; Siegrist RL
    Ground Water; 2003; 41(4):458-69. PubMed ID: 12873009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bench-scale visualization of DNAPL remediation processes in analog heterogeneous aquifers: surfactant floods and in situ oxidation using permanganate.
    Conrad SH; Glass RJ; Peplinski WJ
    J Contam Hydrol; 2002 Sep; 58(1-2):13-49. PubMed ID: 12236553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laboratory-scale in situ chemical oxidation of a perchloroethylene pool using permanganate.
    MacKinnon LK; Thomson NR
    J Contam Hydrol; 2002 May; 56(1-2):49-74. PubMed ID: 12076023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of dissolved organic matter during abiotic oxidation of coal tar--comparison with contaminated soils under natural attenuation.
    Hanser O; Biache C; Boulangé M; Parant S; Lorgeoux C; Billet D; Michels R; Faure P
    Environ Sci Pollut Res Int; 2015 Jan; 22(2):1431-43. PubMed ID: 25146121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the effectiveness of soil heating prior or during in situ chemical oxidation (ISCO) of aged PAH-contaminated soils.
    Ranc B; Faure P; Croze V; Lorgeoux C; Simonnot MO
    Environ Sci Pollut Res Int; 2017 Apr; 24(12):11265-11278. PubMed ID: 28299567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combination of surfactant solubilization with permanganate oxidation for DNAPL remediation.
    Li Z; Hanlie H
    Water Res; 2008 Feb; 42(3):605-14. PubMed ID: 17826816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interphase mass transfer during chemical oxidation of TCE DNAPL in an aqueous system.
    Urynowicz MA; Siegrist RL
    J Contam Hydrol; 2005 Nov; 80(3-4):93-106. PubMed ID: 16214259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Realistic expectations for the treatment of FMGP residuals by chemical oxidants.
    Shafieiyoun S; Thomson NR; Brey AP; Gasinski CM; Pence W; Marley M
    J Contam Hydrol; 2018 Dec; 219():1-17. PubMed ID: 30314848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using slow-release permanganate candles to remediate PAH-contaminated water.
    Rauscher L; Sakulthaew C; Comfort S
    J Hazard Mater; 2012 Nov; 241-242():441-9. PubMed ID: 23089061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative degradation of pentachlorophenol by permanganate for ISCO application.
    Matta R; Chiron S
    Environ Technol; 2018 Mar; 39(5):651-657. PubMed ID: 28317441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.