These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 34643058)

  • 1. Nickel Cobaltite: A Positive Electrode Material for Hybrid Supercapacitors.
    Mahadik SM; Chodankar NR; Han YK; Dubal DP; Patil S
    ChemSusChem; 2021 Dec; 14(24):5384-5398. PubMed ID: 34643058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bimetallic Phosphides for Hybrid Supercapacitors.
    Aziz ST; Kumar S; Riyajuddin S; Ghosh K; Nessim GD; Dubal DP
    J Phys Chem Lett; 2021 Jun; 12(21):5138-5149. PubMed ID: 34032113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen-Vacancy and Surface Modulation of Ultrathin Nickel Cobaltite Nanosheets as a High-Energy Cathode for Advanced Zn-Ion Batteries.
    Zeng Y; Lai Z; Han Y; Zhang H; Xie S; Lu X
    Adv Mater; 2018 Jul; ():e1802396. PubMed ID: 29962041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nickel Cobaltite Nanostructures for Photoelectric and Catalytic Applications.
    Liu S; Hu L; Xu X; Al-Ghamdi AA; Fang X
    Small; 2015 Sep; 11(34):4267-83. PubMed ID: 26121217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible Asymmetric Threadlike Supercapacitors Based on NiCo
    Wang Q; Ma Y; Wu Y; Zhang D; Miao M
    ChemSusChem; 2017 Apr; 10(7):1427-1435. PubMed ID: 28195423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Progress in Carbonaceous and Redox-Active Nanoarchitectures for Hybrid Supercapacitors: Performance Evaluation, Challenges, and Future Prospects.
    Shah SS; Aziz MA; Yamani ZH
    Chem Rec; 2022 Jul; 22(7):e202200018. PubMed ID: 35426239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Advanced Supercapacitor: A Review of Storage Mechanisms, Electrode Materials, Modification, and Perspectives.
    Kumar N; Kim SB; Lee SY; Park SJ
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrode Materials, Structural Design, and Storage Mechanisms in Hybrid Supercapacitors.
    Du X; Lin Z; Wang X; Zhang K; Hu H; Dai S
    Molecules; 2023 Sep; 28(17):. PubMed ID: 37687261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High Energy Density in Combination with High Cycling Stability in Hybrid Supercapacitors.
    Zhang GC; Feng M; Li Q; Wang Z; Fang Z; Niu Z; Qu N; Fan X; Li S; Gu J; Wang J; Wang D
    ACS Appl Mater Interfaces; 2022 Jan; 14(2):2674-2682. PubMed ID: 35001612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel Dual-Ion Hybrid Supercapacitor Based on a NiCo
    Li Y; Tang F; Wang R; Wang C; Liu J
    ACS Appl Mater Interfaces; 2016 Nov; 8(44):30232-30238. PubMed ID: 27797167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface chemistry and structure manipulation of graphene-related materials to address the challenges of electrochemical energy storage.
    Sun Y; Sun J; Sanchez JS; Xia Z; Xiao L; Chen R; Palermo V
    Chem Commun (Camb); 2023 Feb; 59(18):2571-2583. PubMed ID: 36749576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic Effects of Cobalt Molybdate@Phosphate Core-Shell Architectures with Ultrahigh Capacity for Rechargeable Hybrid Supercapacitors.
    Ramulu B; Nagaraju G; Chandra Sekhar S; Hussain SK; Narsimulu D; Yu JS
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41245-41257. PubMed ID: 31591877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoarchitectured graphene-based supercapacitors for next-generation energy-storage applications.
    Salunkhe RR; Lee YH; Chang KH; Li JM; Simon P; Tang J; Torad NL; Hu CC; Yamauchi Y
    Chemistry; 2014 Oct; 20(43):13838-52. PubMed ID: 25251360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Situ Growth of 2D Ultrathin NiCo
    Zhang X; Yang F; Chen H; Wang K; Chen J; Wang Y; Song S
    Small; 2020 Nov; 16(44):e2004188. PubMed ID: 33043586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transition-Metal Oxides Anchored on Nitrogen-Enriched Carbon Ribbons for High-Performance Pseudocapacitors.
    Pang Y; Zhang S; Chen S; Liang J; Li M; Ding D; Ding S
    Chemistry; 2018 Oct; 24(60):16104-16112. PubMed ID: 30080279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Energy Density of Coaxial Fiber Asymmetric Supercapacitor Based on MoS
    He H; Yang X; Wang L; Zhang X; Li X; Lü W
    Chemistry; 2020 Dec; 26(71):17212-17221. PubMed ID: 32954578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials.
    Rauda IE; Augustyn V; Dunn B; Tolbert SH
    Acc Chem Res; 2013 May; 46(5):1113-24. PubMed ID: 23485203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanostructured metal sulfides for energy storage.
    Rui X; Tan H; Yan Q
    Nanoscale; 2014 Sep; 6(17):9889-924. PubMed ID: 25073046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Advancements in Electrochemical Deposition of Metal-Based Electrode Materials for Electrochemical Supercapacitors.
    Islam S; Mia MM; Shah SS; Naher S; Shaikh MN; Aziz MA; Ahammad AJS
    Chem Rec; 2022 Jul; 22(7):e202200013. PubMed ID: 35313076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nickel Cobaltite Functionalized Silver Doped Carbon Xerogels as Efficient Electrode Materials for High Performance Symmetric Supercapacitor.
    A Wasfey M; Abdelwahab A; Carrasco-Marín F; Pérez-Cadenas AF; H Abdullah H; S Yahia I; Farghali AA
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33142879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.