These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 34643190)

  • 1. Factors determining surface oxygen vacancy formation energy in ternary spinel structure oxides with zinc.
    Hinuma Y; Mine S; Toyao T; Kamachi T; Shimizu KI
    Phys Chem Chem Phys; 2021 Oct; 23(41):23768-23777. PubMed ID: 34643190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic Structure-Based Descriptors for Oxide Properties and Functions.
    Giordano L; Akkiraju K; Jacobs R; Vivona D; Morgan D; Shao-Horn Y
    Acc Chem Res; 2022 Feb; 55(3):298-308. PubMed ID: 35050573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cations in Octahedral Sites: A Descriptor for Oxygen Electrocatalysis on Transition-Metal Spinels.
    Wei C; Feng Z; Scherer GG; Barber J; Shao-Horn Y; Xu ZJ
    Adv Mater; 2017 Jun; 29(23):. PubMed ID: 28394440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Data-driven machine learning model for the prediction of oxygen vacancy formation energy of metal oxide materials.
    Wan Z; Wang QD; Liu D; Liang J
    Phys Chem Chem Phys; 2021 Jul; 23(29):15675-15684. PubMed ID: 34269780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trends in Surface Oxygen Formation Energy in Perovskite Oxides.
    Hinuma Y; Mine S; Toyao T; Shimizu KI
    ACS Omega; 2022 Jun; 7(22):18427-18433. PubMed ID: 35694487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Push-Pull Electronic Effects in Surface-Active Sites Enhance Electrocatalytic Oxygen Evolution on Transition Metal Oxides.
    Garcés-Pineda FA; Chuong Nguyën H; Blasco-Ahicart M; García-Tecedor M; de Fez Febré M; Tang PY; Arbiol J; Giménez S; Galán-Mascarós JR; López N
    ChemSusChem; 2021 Mar; 14(6):1595-1601. PubMed ID: 33512070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the Interplay Between Oxygen Vacancies and Small Polarons in Manganese Iron Spinel Oxides.
    Eppstein R; Caspary Toroker M
    ACS Mater Au; 2022 May; 2(3):269-277. PubMed ID: 36855379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intercalation of nanostructured CeO
    Duan X; Wen Z; Zhao Y; Zhou J; Fang H; Cao Y; Jiang L; Ye L; Yuan Y
    Nanoscale; 2018 Feb; 10(7):3331-3341. PubMed ID: 29384541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-energy-surface engineered metal oxide micro- and nanocrystallites and their applications.
    Kuang Q; Wang X; Jiang Z; Xie Z; Zheng L
    Acc Chem Res; 2014 Feb; 47(2):308-18. PubMed ID: 24341353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relative stability of normal vs. inverse spinel for 3d transition metal oxides as lithium intercalation cathodes.
    Bhattacharya J; Wolverton C
    Phys Chem Chem Phys; 2013 May; 15(17):6486-98. PubMed ID: 23529669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis.
    Li C; Han X; Cheng F; Hu Y; Chen C; Chen J
    Nat Commun; 2015 Jun; 6():7345. PubMed ID: 26040417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A theoretical study of water adsorption and decomposition on low-index spinel ZnGa2O4 surfaces: correlation between surface structure and photocatalytic properties.
    Jia C; Fan W; Yang F; Zhao X; Sun H; Li P; Liu L
    Langmuir; 2013 Jun; 29(23):7025-37. PubMed ID: 23682995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insight into the effect of manganese substitution on mesoporous hollow spinel cobalt oxides for catalytic oxidation of toluene.
    Liu P; Liao Y; Li J; Chen L; Fu M; Wu P; Zhu R; Liang X; Wu T; Ye D
    J Colloid Interface Sci; 2021 Jul; 594():713-726. PubMed ID: 33794399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterostructural Mixed Oxides Prepared via ZnAlLa LDH or ex-ZnAl LDH Precursors-Effect of La Content and Its Incorporation Route.
    Antoniak-Jurak K; Kowalik P; Próchniak W; Bicki R; Słowik G
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33924164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mn
    Gao F; Tang X; Yi H; Zhao S; Zhu W; Shi Y
    J Environ Sci (China); 2020 Mar; 89():145-155. PubMed ID: 31892387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design Principles for Metal Oxide Redox Materials for Solar-Driven Isothermal Fuel Production.
    Michalsky R; Botu V; Hargus CM; Peterson AA; Steinfeld A
    Adv Energy Mater; 2015 Apr; 5(7):1401082. PubMed ID: 26855639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface activation by electron scavenger metal nanorod adsorption on TiH
    Hinuma Y; Mine S; Toyao T; Maeno Z; Shimizu KI
    Phys Chem Chem Phys; 2021 Aug; 23(31):16577-16593. PubMed ID: 34320045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering Surface Structure of Spinel Oxides via High-Valent Vanadium Doping for Remarkably Enhanced Electrocatalytic Oxygen Evolution Reaction.
    Wei R; Bu X; Gao W; Villaos RAB; Macam G; Huang ZQ; Lan C; Chuang FC; Qu Y; Ho JC
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):33012-33021. PubMed ID: 31414595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface and bulk aspects of mixed oxide catalytic nanoparticles: oxidation and dehydration of CH(3)OH by polyoxometallates.
    Nakka L; Molinari JE; Wachs IE
    J Am Chem Soc; 2009 Oct; 131(42):15544-54. PubMed ID: 19807071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamic Analysis and Crystallographic Properties of MFe
    Jiao Y; Zhang S; Tan Y
    Entropy (Basel); 2022 Feb; 24(2):. PubMed ID: 35205539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.