BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 34643232)

  • 1. Improving cancer driver gene identification using multi-task learning on graph convolutional network.
    Peng W; Tang Q; Dai W; Chen T
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34643232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MiRNA-gene network embedding for predicting cancer driver genes.
    Peng W; Wu R; Dai W; Ning Y; Fu X; Liu L; Liu L
    Brief Funct Genomics; 2023 Jul; 22(4):341-350. PubMed ID: 36752023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying cancer driver genes based on multi-view heterogeneous graph convolutional network and self-attention mechanism.
    Peng W; Wu R; Dai W; Yu N
    BMC Bioinformatics; 2023 Jan; 24(1):16. PubMed ID: 36639646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MODIG: integrating multi-omics and multi-dimensional gene network for cancer driver gene identification based on graph attention network model.
    Zhao W; Gu X; Chen S; Wu J; Zhou Z
    Bioinformatics; 2022 Oct; 38(21):4901-4907. PubMed ID: 36094338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DGMP: Identifying Cancer Driver Genes by Jointing DGCN and MLP from Multi-omics Genomic Data.
    Zhang SW; Xu JY; Zhang T
    Genomics Proteomics Bioinformatics; 2022 Oct; 20(5):928-938. PubMed ID: 36464123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel heterophilic graph diffusion convolutional network for identifying cancer driver genes.
    Zhang T; Zhang SW; Xie MY; Li Y
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37055234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SMG: self-supervised masked graph learning for cancer gene identification.
    Cui Y; Wang Z; Wang X; Zhang Y; Zhang Y; Pan T; Zhang Z; Li S; Guo Y; Akutsu T; Song J
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37950905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient link prediction in the protein-protein interaction network using topological information in a generative adversarial network machine learning model.
    Balogh OM; Benczik B; Horváth A; Pétervári M; Csermely P; Ferdinandy P; Ágg B
    BMC Bioinformatics; 2022 Feb; 23(1):78. PubMed ID: 35183129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prioritization of cancer driver gene with prize-collecting steiner tree by introducing an edge weighted strategy in the personalized gene interaction network.
    Zhang SW; Wang ZN; Li Y; Guo WF
    BMC Bioinformatics; 2022 Aug; 23(1):341. PubMed ID: 35974311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving anti-cancer drug response prediction using multi-task learning on graph convolutional networks.
    Liu H; Peng W; Dai W; Lin J; Fu X; Liu L; Liu L; Yu N
    Methods; 2024 Feb; 222():41-50. PubMed ID: 38157919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of Cancer Driver Genes by Integrating Multiomics Data with Graph Neural Networks.
    Song H; Yin C; Li Z; Feng K; Cao Y; Gu Y; Sun H
    Metabolites; 2023 Feb; 13(3):. PubMed ID: 36984779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting cancer drug response using parallel heterogeneous graph convolutional networks with neighborhood interactions.
    Peng W; Liu H; Dai W; Yu N; Wang J
    Bioinformatics; 2022 Sep; 38(19):4546-4553. PubMed ID: 35997568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. KGE-UNIT: toward the unification of molecular interactions prediction based on knowledge graph and multi-task learning on drug discovery.
    Zhang C; Zang T; Zhao T
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38348746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-Task Network Representation Learning.
    Xie Y; Jin P; Gong M; Zhang C; Yu B
    Front Neurosci; 2020; 14():1. PubMed ID: 32038151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MVS-GCN: A prior brain structure learning-guided multi-view graph convolution network for autism spectrum disorder diagnosis.
    Wen G; Cao P; Bao H; Yang W; Zheng T; Zaiane O
    Comput Biol Med; 2022 Mar; 142():105239. PubMed ID: 35066446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying and ranking potential cancer drivers using representation learning on attributed network.
    Peng W; Yi S; Dai W; Wang J
    Methods; 2021 Aug; 192():13-24. PubMed ID: 32758683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving Cancer Survival Prediction via Graph Convolutional Neural Network Learning on Protein-Protein Interaction Networks.
    Cai H; Liao Y; Zhu L; Wang Z; Song J
    IEEE J Biomed Health Inform; 2024 Feb; 28(2):1134-1143. PubMed ID: 37963003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Explainable Multilayer Graph Neural Network for cancer gene prediction.
    Chatzianastasis M; Vazirgiannis M; Zhang Z
    Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37862225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advancing cancer driver gene detection via Schur complement graph augmentation and independent subspace feature extraction.
    Ma X; Li Z; Du Z; Xu Y; Chen Y; Zhuo L; Fu X; Liu R
    Comput Biol Med; 2024 May; 174():108484. PubMed ID: 38643595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RAMP: response-aware multi-task learning with contrastive regularization for cancer drug response prediction.
    Lee K; Cho D; Jang J; Choi K; Jeong HO; Seo J; Jeong WK; Lee S
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36460623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.