These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 34643232)

  • 1. Improving cancer driver gene identification using multi-task learning on graph convolutional network.
    Peng W; Tang Q; Dai W; Chen T
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34643232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MiRNA-gene network embedding for predicting cancer driver genes.
    Peng W; Wu R; Dai W; Ning Y; Fu X; Liu L; Liu L
    Brief Funct Genomics; 2023 Jul; 22(4):341-350. PubMed ID: 36752023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying cancer driver genes based on multi-view heterogeneous graph convolutional network and self-attention mechanism.
    Peng W; Wu R; Dai W; Yu N
    BMC Bioinformatics; 2023 Jan; 24(1):16. PubMed ID: 36639646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MODIG: integrating multi-omics and multi-dimensional gene network for cancer driver gene identification based on graph attention network model.
    Zhao W; Gu X; Chen S; Wu J; Zhou Z
    Bioinformatics; 2022 Oct; 38(21):4901-4907. PubMed ID: 36094338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DGMP: Identifying Cancer Driver Genes by Jointing DGCN and MLP from Multi-omics Genomic Data.
    Zhang SW; Xu JY; Zhang T
    Genomics Proteomics Bioinformatics; 2022 Oct; 20(5):928-938. PubMed ID: 36464123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel heterophilic graph diffusion convolutional network for identifying cancer driver genes.
    Zhang T; Zhang SW; Xie MY; Li Y
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37055234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SMG: self-supervised masked graph learning for cancer gene identification.
    Cui Y; Wang Z; Wang X; Zhang Y; Zhang Y; Pan T; Zhang Z; Li S; Guo Y; Akutsu T; Song J
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37950905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SSCI: Self-Supervised Deep Learning Improves Network Structure for Cancer Driver Gene Identification.
    Xu J; Hao J; Liao X; Shang X; Li X
    Int J Mol Sci; 2024 Sep; 25(19):. PubMed ID: 39408682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A heterogeneous graph transformer framework for accurate cancer driver gene prediction and downstream analysis.
    Xiong S; Zhang J; Luo H; Zhang Y; Xiao Q
    Methods; 2024 Dec; 232():9-17. PubMed ID: 39426693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient link prediction in the protein-protein interaction network using topological information in a generative adversarial network machine learning model.
    Balogh OM; Benczik B; Horváth A; Pétervári M; Csermely P; Ferdinandy P; Ágg B
    BMC Bioinformatics; 2022 Feb; 23(1):78. PubMed ID: 35183129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prioritization of cancer driver gene with prize-collecting steiner tree by introducing an edge weighted strategy in the personalized gene interaction network.
    Zhang SW; Wang ZN; Li Y; Guo WF
    BMC Bioinformatics; 2022 Aug; 23(1):341. PubMed ID: 35974311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving anti-cancer drug response prediction using multi-task learning on graph convolutional networks.
    Liu H; Peng W; Dai W; Lin J; Fu X; Liu L; Liu L; Yu N
    Methods; 2024 Feb; 222():41-50. PubMed ID: 38157919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Cancer Driver Genes by Integrating Multiomics Data with Graph Neural Networks.
    Song H; Yin C; Li Z; Feng K; Cao Y; Gu Y; Sun H
    Metabolites; 2023 Feb; 13(3):. PubMed ID: 36984779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting cancer drug response using parallel heterogeneous graph convolutional networks with neighborhood interactions.
    Peng W; Liu H; Dai W; Yu N; Wang J
    Bioinformatics; 2022 Sep; 38(19):4546-4553. PubMed ID: 35997568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. KGE-UNIT: toward the unification of molecular interactions prediction based on knowledge graph and multi-task learning on drug discovery.
    Zhang C; Zang T; Zhao T
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38348746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-Task Network Representation Learning.
    Xie Y; Jin P; Gong M; Zhang C; Yu B
    Front Neurosci; 2020; 14():1. PubMed ID: 32038151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MVS-GCN: A prior brain structure learning-guided multi-view graph convolution network for autism spectrum disorder diagnosis.
    Wen G; Cao P; Bao H; Yang W; Zheng T; Zaiane O
    Comput Biol Med; 2022 Mar; 142():105239. PubMed ID: 35066446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying and ranking potential cancer drivers using representation learning on attributed network.
    Peng W; Yi S; Dai W; Wang J
    Methods; 2021 Aug; 192():13-24. PubMed ID: 32758683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving Cancer Survival Prediction via Graph Convolutional Neural Network Learning on Protein-Protein Interaction Networks.
    Cai H; Liao Y; Zhu L; Wang Z; Song J
    IEEE J Biomed Health Inform; 2024 Feb; 28(2):1134-1143. PubMed ID: 37963003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Explainable Multilayer Graph Neural Network for cancer gene prediction.
    Chatzianastasis M; Vazirgiannis M; Zhang Z
    Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37862225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.