These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 34643234)

  • 1. PTMdyna: exploring the influence of post-translation modifications on protein conformational dynamics.
    Shi XX; Wang ZZ; Wang YL; Huang GY; Yang JF; Wang F; Hao GF; Yang GF
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34643234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systems Level Analysis of Histone H3 Post-translational Modifications (PTMs) Reveals Features of PTM Crosstalk in Chromatin Regulation.
    Schwämmle V; Sidoli S; Ruminowicz C; Wu X; Lee CF; Helin K; Jensen ON
    Mol Cell Proteomics; 2016 Aug; 15(8):2715-29. PubMed ID: 27302890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vienna-PTM web server: a toolkit for MD simulations of protein post-translational modifications.
    Margreitter C; Petrov D; Zagrovic B
    Nucleic Acids Res; 2013 Jul; 41(Web Server issue):W422-6. PubMed ID: 23703210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PTM-ssMP: A Web Server for Predicting Different Types of Post-translational Modification Sites Using Novel Site-specific Modification Profile.
    Liu Y; Wang M; Xi J; Luo F; Li A
    Int J Biol Sci; 2018; 14(8):946-956. PubMed ID: 29989096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of lysine-methylated sites on histones and non-histone proteins.
    Lee TY; Chang CW; Lu CT; Cheng TH; Chang TH
    Comput Biol Chem; 2014 Jun; 50():11-8. PubMed ID: 24560580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation and identification of functional post-translational modification sites associated with drug binding and protein-protein interactions.
    Su MG; Weng JT; Hsu JB; Huang KY; Chi YH; Lee TY
    BMC Syst Biol; 2017 Dec; 11(Suppl 7):132. PubMed ID: 29322920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural cooperativity in histone H3 tail modifications.
    Sanli D; Keskin O; Gursoy A; Erman B
    Protein Sci; 2011 Dec; 20(12):1982-90. PubMed ID: 21956975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methylation of histone H3 lysine 9 occurs during translation.
    Rivera C; Saavedra F; Alvarez F; Díaz-Celis C; Ugalde V; Li J; Forné I; Gurard-Levin ZA; Almouzni G; Imhof A; Loyola A
    Nucleic Acids Res; 2015 Oct; 43(19):9097-106. PubMed ID: 26405197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visualization of the dynamics of histone modifications and their crosstalk using PTM-CrossTalkMapper.
    Kirsch R; Jensen ON; Schwämmle V
    Methods; 2020 Dec; 184():78-85. PubMed ID: 31978537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mass spectrometry analysis of the variants of histone H3 and H4 of soybean and their post-translational modifications.
    Wu T; Yuan T; Tsai SN; Wang C; Sun SM; Lam HM; Ngai SM
    BMC Plant Biol; 2009 Jul; 9():98. PubMed ID: 19643030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics for computational proteomics of methylated histone H3.
    Grauffel C; Stote RH; Dejaegere A
    Biochim Biophys Acta; 2015 May; 1850(5):1026-1040. PubMed ID: 25240462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photo-lysine captures proteins that bind lysine post-translational modifications.
    Yang T; Li XM; Bao X; Fung YM; Li XD
    Nat Chem Biol; 2016 Feb; 12(2):70-2. PubMed ID: 26689789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of fully synthetic histone H3 reveals that acetyl-lysine 56 facilitates protein binding within nucleosomes.
    Shimko JC; North JA; Bruns AN; Poirier MG; Ottesen JJ
    J Mol Biol; 2011 Apr; 408(2):187-204. PubMed ID: 21310161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Arabidopsis (ASHH2) CW domain binds monomethylated K4 of the histone H3 tail through conformational selection.
    Dobrovolska O; Brilkov M; Madeleine N; Ødegård-Fougner Ø; Strømland Ø; Martin SR; De Marco V; Christodoulou E; Teigen K; Isaksson J; Underhaug J; Reuter N; Aalen RB; Aasland R; Halskau Ø
    FEBS J; 2020 Oct; 287(20):4458-4480. PubMed ID: 32083791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring the crosstalk between methylation and phosphorylation on histone peptides with host-assisted capillary electrophoresis.
    Lee J; Chen J; Sarkar P; Xue M; Hooley RJ; Zhong W
    Anal Bioanal Chem; 2020 Sep; 412(24):6189-6198. PubMed ID: 32064571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circular dichroism spectroscopic study on structural alterations of histones induced by post-translational modifications in DNA damage responses: lysine-9 methylation of H3.
    Izumi Y; Matsuo K; Fujii K; Yokoya A; Taniguchi M; Namatame H
    J Radiat Res; 2018 Mar; 59(2):108-115. PubMed ID: 29244169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of combinatorial histone modifications on antibody and effector protein recognition.
    Fuchs SM; Krajewski K; Baker RW; Miller VL; Strahl BD
    Curr Biol; 2011 Jan; 21(1):53-8. PubMed ID: 21167713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative analysis of histone H3 and H4 post-translational modifications of esophageal squamous cell carcinoma with different invasive capabilities.
    Zhang K; Li L; Zhu M; Wang G; Xie J; Zhao Y; Fan E; Xu L; Li E
    J Proteomics; 2015 Jan; 112():180-9. PubMed ID: 25234497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Post-translational modifications and chromatin dynamics.
    Tolsma TO; Hansen JC
    Essays Biochem; 2019 Apr; 63(1):89-96. PubMed ID: 31015385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The functional diversity of protein lysine methylation.
    Lanouette S; Mongeon V; Figeys D; Couture JF
    Mol Syst Biol; 2014 Apr; 10(4):724. PubMed ID: 24714364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.