BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34643320)

  • 1. Clinical application and improvement of a CNN-based autosegmentation model for clinical target volumes in cervical cancer radiotherapy.
    Chang Y; Wang Z; Peng Z; Zhou J; Pi Y; Xu XG; Pei X
    J Appl Clin Med Phys; 2021 Nov; 22(11):115-125. PubMed ID: 34643320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An uncertainty-aware deep learning architecture with outlier mitigation for prostate gland segmentation in radiotherapy treatment planning.
    Li X; Bagher-Ebadian H; Gardner S; Kim J; Elshaikh M; Movsas B; Zhu D; Chetty IJ
    Med Phys; 2023 Jan; 50(1):311-322. PubMed ID: 36112996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning-based auto-segmentation of clinical target volumes for radiotherapy treatment of cervical cancer.
    Ma CY; Zhou JY; Xu XT; Guo J; Han MF; Gao YZ; Du H; Stahl JN; Maltz JS
    J Appl Clin Med Phys; 2022 Feb; 23(2):e13470. PubMed ID: 34807501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and validation of a deep learning algorithm for auto-delineation of clinical target volume and organs at risk in cervical cancer radiotherapy.
    Liu Z; Liu X; Guan H; Zhen H; Sun Y; Chen Q; Chen Y; Wang S; Qiu J
    Radiother Oncol; 2020 Dec; 153():172-179. PubMed ID: 33039424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic clinical target volume delineation for cervical cancer in CT images using deep learning.
    Shi J; Ding X; Liu X; Li Y; Liang W; Wu J
    Med Phys; 2021 Jul; 48(7):3968-3981. PubMed ID: 33905545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autosegmentation of prostate anatomy for radiation treatment planning using deep decision forests of radiomic features.
    Macomber MW; Phillips M; Tarapov I; Jena R; Nori A; Carter D; Folgoc LL; Criminisi A; Nyflot MJ
    Phys Med Biol; 2018 Nov; 63(23):235002. PubMed ID: 30465543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dedicated MRI simulation for cervical cancer radiation treatment planning: Assessing the impact on clinical target volume delineation.
    Veera J; Lim K; Dowling JA; O'Connor C; Holloway LC; Vinod SK
    J Med Imaging Radiat Oncol; 2019 Apr; 63(2):236-243. PubMed ID: 30506944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autosegmentation based on different-sized training datasets of consistently-curated volumes and impact on rectal contours in prostate cancer radiation therapy.
    Elisabeth Olsson C; Suresh R; Niemelä J; Akram SU; Valdman A
    Phys Imaging Radiat Oncol; 2022 Apr; 22():67-72. PubMed ID: 35572041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical evaluation of deep learning-based clinical target volume three-channel auto-segmentation algorithm for adaptive radiotherapy in cervical cancer.
    Ma CY; Zhou JY; Xu XT; Qin SB; Han MF; Cao XH; Gao YZ; Xu L; Zhou JJ; Zhang W; Jia LC
    BMC Med Imaging; 2022 Jul; 22(1):123. PubMed ID: 35810273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Segmentation of organs-at-risk in cervical cancer CT images with a convolutional neural network.
    Liu Z; Liu X; Xiao B; Wang S; Miao Z; Sun Y; Zhang F
    Phys Med; 2020 Jan; 69():184-191. PubMed ID: 31918371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assembling High-Quality Lymph Node Clinical Target Volumes for Cervical Cancer Radiotherapy Using a Deep Learning-Based Approach.
    Jiang X; Zhang S; Fu Y; Yu H; Tang H; Wu X
    Curr Med Imaging; 2023 Sep; ():. PubMed ID: 37724668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of deep learning-based auto-segmentation algorithms for delineating clinical target volume and organs at risk involving data for 125 cervical cancer patients.
    Wang Z; Chang Y; Peng Z; Lv Y; Shi W; Wang F; Pei X; Xu XG
    J Appl Clin Med Phys; 2020 Dec; 21(12):272-279. PubMed ID: 33238060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in Tumor Volumes and Spatial Locations Relative to Normal Tissues During Cervical Cancer Radiotherapy Assessed by Cone Beam Computed Tomography.
    Chen W; Bai P; Pan J; Xu Y; Chen K
    Technol Cancer Res Treat; 2017 Apr; 16(2):246-252. PubMed ID: 28052737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Review of Deep Learning Based Autosegmentation for Clinical Target Volume: Current Status and Future Directions.
    Matoska T; Patel M; Liu H; Beriwal S
    Adv Radiat Oncol; 2024 May; 9(5):101470. PubMed ID: 38550365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Accuracy of different image registration methods in image-guided adaptive brachytherapy for cervical cancer].
    Peng Q; Peng Y; Zhu J; Cai M; Zhou L
    Nan Fang Yi Ke Da Xue Xue Bao; 2018 Nov; 38(11):1344-1348. PubMed ID: 30514683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Whole liver segmentation based on deep learning and manual adjustment for clinical use in SIRT.
    Tang X; Jafargholi Rangraz E; Coudyzer W; Bertels J; Robben D; Schramm G; Deckers W; Maleux G; Baete K; Verslype C; Gooding MJ; Deroose CM; Nuyts J
    Eur J Nucl Med Mol Imaging; 2020 Nov; 47(12):2742-2752. PubMed ID: 32314026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atlas-based auto-segmentation for postoperative radiotherapy planning in endometrial and cervical cancers.
    Kim N; Chang JS; Kim YB; Kim JS
    Radiat Oncol; 2020 May; 15(1):106. PubMed ID: 32404123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-risk CTV delineation for cervix brachytherapy: Application of GEC-ESTRO guidelines in Australia and New Zealand.
    Vinod SK; Lim K; Bell L; Veera J; Ohanessian L; Juresic E; Borok N; Chan P; Chee R; Do V; Govindarajulu G; Sridharan S; Johnson C; Moses D; Van Dyk S; Holloway L
    J Med Imaging Radiat Oncol; 2017 Feb; 61(1):133-140. PubMed ID: 27527506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic segmentation and applicator reconstruction for CT-based brachytherapy of cervical cancer using 3D convolutional neural networks.
    Zhang D; Yang Z; Jiang S; Zhou Z; Meng M; Wang W
    J Appl Clin Med Phys; 2020 Oct; 21(10):158-169. PubMed ID: 32991783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Technical Note: A deep learning-based autosegmentation of rectal tumors in MR images.
    Wang J; Lu J; Qin G; Shen L; Sun Y; Ying H; Zhang Z; Hu W
    Med Phys; 2018 Jun; 45(6):2560-2564. PubMed ID: 29663417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.