These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 34643385)

  • 21. Design of vanadium-dioxide-based resonant structures for tunable optical response.
    Fayyaz Kashif M; Stomeo T; Antonietta Vincenti M; De Vittorio M; Scalora M; D'Orazio A; de Ceglia D; Grande M
    Opt Lett; 2022 May; 47(9):2286-2289. PubMed ID: 35486781
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly tunable bioadhesion and optics of 3D printable PNIPAm/cellulose nanofibrils hydrogels.
    Sun X; Tyagi P; Agate S; McCord MG; Lucia LA; Pal L
    Carbohydr Polym; 2020 Apr; 234():115898. PubMed ID: 32070518
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Poly(N-isopropylacrylamide) hydrogel-based shape-adjustable polyimide films triggered by near-human-body temperature.
    Huanqing Cui ; Xuemin Du ; Juan Wang ; Tianhong Tang ; Tianzhun Wu
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4197-4200. PubMed ID: 28269208
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydrogel microparticles as dynamically tunable microlenses.
    Kim J; Serpe MJ; Lyon LA
    J Am Chem Soc; 2004 Aug; 126(31):9512-3. PubMed ID: 15291534
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Artificial Skin with Patterned Stripes for Color Camouflage and Thermoregulation.
    Liu J; Zhou J; Meng Y; Zhu L; Xu J; Huang Z; Wang S; Xia Y
    ACS Appl Mater Interfaces; 2023 Oct; 15(41):48601-48612. PubMed ID: 37787638
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tough Al-alginate/poly(N-isopropylacrylamide) hydrogel with tunable LCST for soft robotics.
    Zheng WJ; An N; Yang JH; Zhou J; Chen YM
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1758-64. PubMed ID: 25561431
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Switchable Induced-Transmission Filters Enabled by Vanadium Dioxide.
    Wan C; Woolf D; Hessel CM; Salman J; Xiao Y; Yao C; Wright A; Hensley JM; Kats MA
    Nano Lett; 2022 Jan; 22(1):6-13. PubMed ID: 34958595
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multi stimuli-responsive hydrogel microfibers containing magnetite nanoparticles prepared using microcapillary devices.
    Lim D; Lee E; Kim H; Park S; Baek S; Yoon J
    Soft Matter; 2015 Feb; 11(8):1606-13. PubMed ID: 25594916
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deswelling kinetics of color tunable poly(N-isopropylacrylamide) microgel-based etalons.
    Carter MC; Sorrell CD; Serpe MJ
    J Phys Chem B; 2011 Dec; 115(49):14359-68. PubMed ID: 22029413
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multi-responsive nanocomposite membranes of cellulose nanocrystals and poly(N-isopropyl acrylamide) with tunable chiral nematic structures.
    Sui Y; Li X; Chang W; Wan H; Li W; Yang F; Yu ZZ
    Carbohydr Polym; 2020 Mar; 232():115778. PubMed ID: 31952587
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Large-scale, low-cost, broadband and tunable perfect optical absorber based on phase-change material.
    Mou N; Liu X; Wei T; Dong H; He Q; Zhou L; Zhang Y; Zhang L; Sun S
    Nanoscale; 2020 Mar; 12(9):5374-5379. PubMed ID: 31994580
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced Optical Sensitivity in Thermoresponsive Photonic Crystal Hydrogels by Operating Near the Phase Transition.
    Jung S; MacConaghy KI; Kaar JL; Stoykovich MP
    ACS Appl Mater Interfaces; 2017 Aug; 9(33):27927-27935. PubMed ID: 28758737
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A bioinspired poly(N-isopropylacrylamide)/silver nanocomposite as a photonic crystal with both optical and thermal responses.
    Fei X; Lu T; Ma J; Zhu S; Zhang D
    Nanoscale; 2017 Sep; 9(35):12969-12975. PubMed ID: 28832048
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly Sensitive Color Tunablility by Scalable Nanomorphology of a Dielectric Layer in Liquid-Permeable Metal-Insulator-Metal Structure.
    Yu ES; Lee SH; Bae YG; Choi J; Lee D; Kim C; Lee T; Lee SY; Lee SD; Ryu YS
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):38581-38587. PubMed ID: 30295452
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plasmonic- and dielectric-based structural coloring: from fundamentals to practical applications.
    Lee T; Jang J; Jeong H; Rho J
    Nano Converg; 2018; 5(1):1. PubMed ID: 29375956
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design and fabrication of nanofibrillated cellulose-containing bilayer hydrogel actuators with temperature and near infrared laser responses.
    Zhao Q; Liang Y; Ren L; Yu Z; Zhang Z; Qiu F; Ren L
    J Mater Chem B; 2018 Feb; 6(8):1260-1271. PubMed ID: 32254187
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tunable Plasmonic Nanohole Arrays Actuated by a Thermoresponsive Hydrogel Cushion.
    Sharma N; Keshmiri H; Zhou X; Wong TI; Petri C; Jonas U; Liedberg B; Dostalek J
    J Phys Chem C Nanomater Interfaces; 2016 Jan; 120(1):561-568. PubMed ID: 27182290
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermo-responsive in-situ forming hydrogels as barriers to prevent post-operative peritendinous adhesion.
    Chou PY; Chen SH; Chen CH; Chen SH; Fong YT; Chen JP
    Acta Biomater; 2017 Nov; 63():85-95. PubMed ID: 28919215
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication of Flexible Hydrogel Sheets Featuring Periodically Spaced Circular Holes with Continuously Adjustable Size in Real Time.
    Jelken J; Pandiyarajan CK; Genzer J; Lomadze N; Santer S
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30844-30851. PubMed ID: 30114362
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrically tunable perfect light absorbers as color filters and modulators.
    Mirshafieyan SS; Gregory DA
    Sci Rep; 2018 Feb; 8(1):2635. PubMed ID: 29422631
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.