These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 34643403)

  • 1. Unraveling H
    Wang J; Du J; Zhao J; Wang Y; Tang Y; Cui G
    J Phys Chem Lett; 2021 Oct; 12(41):10163-10168. PubMed ID: 34643403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Progress on Rechargeable Zn-X (X=S, Se, Te, I
    Du W; Song Z; Zheng X; Lv Y; Miao L; Gan L; Liu M
    ChemSusChem; 2024 Jun; ():e202400886. PubMed ID: 38899510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A High-Energy Tellurium Redox-Amphoteric Conversion Cathode Chemistry for Aqueous Zinc Batteries.
    Du J; Zhao Y; Chu X; Wang G; Neumann C; Xu H; Li X; Löffler M; Lu Q; Zhang J; Li D; Zou J; Mikhailova D; Turchanin A; Feng X; Yu M
    Adv Mater; 2024 May; 36(19):e2313621. PubMed ID: 38316395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conversion-Type Nonmetal Elemental Tellurium Anode with High Utilization for Mild/Alkaline Zinc Batteries.
    Chen Z; Li C; Yang Q; Wang D; Li X; Huang Z; Liang G; Chen A; Zhi C
    Adv Mater; 2021 Dec; 33(51):e2105426. PubMed ID: 34612536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Tellurium-Boosted High-Areal-Capacity Zinc-Sulfur Battery.
    Zhang Y; Amardeep A; Wu Z; Tao L; Xu J; Freschi DJ; Liu J
    Adv Sci (Weinh); 2024 Jun; 11(23):e2308580. PubMed ID: 38566441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MoO
    Wang H; Yang W; Xu H; Li M; Liu H; Gong S; Zhao F; Li C; Qi J; Peng W; Liu J
    Small; 2023 Dec; 19(50):e2304504. PubMed ID: 37635108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aqueous Zinc-Tellurium Batteries with Ultraflat Discharge Plateau and High Volumetric Capacity.
    Chen Z; Yang Q; Mo F; Li N; Liang G; Li X; Huang Z; Wang D; Huang W; Fan J; Zhi C
    Adv Mater; 2020 Oct; 32(42):e2001469. PubMed ID: 32924220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Reversible Six-Electron Transfer Cathode for Advanced Aqueous Zinc Batteries.
    Yan Z; Li J; Liu H; Zhang H; Xi S; Zhu Z
    Angew Chem Int Ed Engl; 2023 Nov; 62(47):e202312000. PubMed ID: 37753789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tellurium with Reversible Six-Electron Transfer Chemistry for High-Performance Zinc Batteries.
    Chen Z; Wang S; Wei Z; Wang Y; Wu Z; Hou Y; Zhu J; Wang Y; Liang G; Huang Z; Chen A; Wang D; Zhi C
    J Am Chem Soc; 2023 Sep; 145(37):20521-20529. PubMed ID: 37672393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Joint Charge Storage for High-Rate Aqueous Zinc-Manganese Dioxide Batteries.
    Jin Y; Zou L; Liu L; Engelhard MH; Patel RL; Nie Z; Han KS; Shao Y; Wang C; Zhu J; Pan H; Liu J
    Adv Mater; 2019 Jul; 31(29):e1900567. PubMed ID: 31157468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrolyte Effect on the Electrochemical Performance of Mild Aqueous Zinc-Electrolytic Manganese Dioxide Batteries.
    Pan H; Ellis JF; Li X; Nie Z; Chang HJ; Reed D
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):37524-37530. PubMed ID: 31525016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Photo-rechargeable Aqueous Zinc-Tellurium Battery Enabled by the Janus-Jointed Perovskite/Te Photocathode.
    Liu H; Wu P; Wang R; Meng H; Zhang Y; Bao W; Li J
    ACS Nano; 2023 Jan; ():. PubMed ID: 36622820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in Aqueous Zinc Ion Batteries based on Conversion Mechanism: Challenges, Strategies, and Prospects.
    Xu H; Yang W; Li M; Liu H; Gong S; Zhao F; Li C; Qi J; Wang H; Peng W; Liu J
    Small; 2024 Jul; 20(27):e2310972. PubMed ID: 38282180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Initiating Reversible Aqueous Copper-Tellurium Conversion Reaction with High Volumetric Capacity through Electrolyte Engineering.
    Sun Y; Zhao Y; Lei Q; Du W; Yao Z; Zhang W; Si J; Ren Z; Chen J; Gao Y; Wen W; Tai R; Li X; Zhu D
    Adv Mater; 2023 Mar; 35(9):e2209322. PubMed ID: 36482793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Progress in Multivalent Metal (Mg, Zn, Ca, and Al) and Metal-Ion Rechargeable Batteries with Organic Materials as Promising Electrodes.
    Xie J; Zhang Q
    Small; 2019 Apr; 15(15):e1805061. PubMed ID: 30848095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ZnTe/rGO Composite as the Fully Zinced Conversion-Type Cathodes for Aqueous Zinc Ion Batteries.
    Yi S; Si R; Su Y; Bao W; Guo C; Li J
    Chemistry; 2023 Feb; 29(12):e202203339. PubMed ID: 36458959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binder-free Cu-supported Ag nanowires for aqueous rechargeable silver-zinc batteries with ultrahigh areal capacity.
    Zhang Y; Li X; Cheng Y; Tan W; Huang X
    J Colloid Interface Sci; 2021 Mar; 586():47-55. PubMed ID: 33162035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rechargeable Aqueous Electrochromic Batteries Utilizing Ti-Substituted Tungsten Molybdenum Oxide Based Zn
    Li H; McRae L; Firby CJ; Elezzabi AY
    Adv Mater; 2019 Apr; 31(15):e1807065. PubMed ID: 30803069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Naphthoquinone-Based Composite Cathodes for Aqueous Rechargeable Zinc-Ion Batteries.
    Kumankuma-Sarpong J; Tang S; Guo W; Fu Y
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4084-4092. PubMed ID: 33459008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unlocking Four-electron Conversion in Tellurium Cathodes for Advanced Magnesium-based Dual-ion Batteries.
    Morag A; Chu X; Marczewski M; Kunigkeit J; Neumann C; Sabaghi D; Żukowska GZ; Du J; Li X; Turchanin A; Brunner E; Feng X; Yu M
    Angew Chem Int Ed Engl; 2024 May; 63(19):e202401818. PubMed ID: 38465851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.