These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 34643627)

  • 1. Fully 3D printed fluidic devices with integrated valves and pumps for flow injection analysis.
    Castiaux AD; Selemani MA; Ward MA; Martin RS
    Anal Methods; 2021 Nov; 13(42):5017-5024. PubMed ID: 34643627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High density 3D printed microfluidic valves, pumps, and multiplexers.
    Gong H; Woolley AT; Nordin GP
    Lab Chip; 2016 Jul; 16(13):2450-8. PubMed ID: 27242064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Printed Microfluidics.
    Nielsen AV; Beauchamp MJ; Nordin GP; Woolley AT
    Annu Rev Anal Chem (Palo Alto Calif); 2020 Jun; 13(1):45-65. PubMed ID: 31821017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D-printed microfluidic automation.
    Au AK; Bhattacharjee N; Horowitz LF; Chang TC; Folch A
    Lab Chip; 2015 Apr; 15(8):1934-41. PubMed ID: 25738695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PolyJet 3D-Printed Enclosed Microfluidic Channels without Photocurable Supports.
    Castiaux AD; Pinger CW; Hayter EA; Bunn ME; Martin RS; Spence DM
    Anal Chem; 2019 May; 91(10):6910-6917. PubMed ID: 31035747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D Printed Multimaterial Microfluidic Valve.
    Keating SJ; Gariboldi MI; Patrick WG; Sharma S; Kong DS; Oxman N
    PLoS One; 2016; 11(8):e0160624. PubMed ID: 27525809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scalable 3D printing method for the manufacture of single-material fluidic devices with integrated filter for point of collection colourimetric analysis.
    Keshan Balavandy S; Li F; Macdonald NP; Maya F; Townsend AT; Frederick K; Guijt RM; Breadmore MC
    Anal Chim Acta; 2021 Mar; 1151():238101. PubMed ID: 33608072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct embedding and versatile placement of electrodes in 3D printed microfluidic-devices.
    Castiaux AD; Currens ER; Martin RS
    Analyst; 2020 May; 145(9):3274-3282. PubMed ID: 32242194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocompatible High-Resolution 3D-Printed Microfluidic Devices: Integrated Cell Chemotaxis Demonstration.
    Boaks M; Roper C; Viglione M; Hooper K; Woolley AT; Christensen KA; Nordin GP
    Micromachines (Basel); 2023 Aug; 14(8):. PubMed ID: 37630125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile Route for 3D Printing of Transparent PETg-Based Hybrid Biomicrofluidic Devices Promoting Cell Adhesion.
    Mehta V; Vilikkathala Sudhakaran S; Rath SN
    ACS Biomater Sci Eng; 2021 Aug; 7(8):3947-3963. PubMed ID: 34282888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D-Printed Microfluidic Devices for Enhanced Online Sampling and Direct Optical Measurements.
    Monia Kabandana GK; Jones CG; Sharifi SK; Chen C
    ACS Sens; 2020 Jul; 5(7):2044-2051. PubMed ID: 32363857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D printing for the integration of porous materials into miniaturised fluidic devices: A review.
    Balakrishnan HK; Doeven EH; Merenda A; Dumée LF; Guijt RM
    Anal Chim Acta; 2021 Nov; 1185():338796. PubMed ID: 34711329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multimaterial 3D Printed Fluidic Device for Measuring Pharmaceuticals in Biological Fluids.
    Li F; Macdonald NP; Guijt RM; Breadmore MC
    Anal Chem; 2019 Feb; 91(3):1758-1763. PubMed ID: 30513198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FDM 3D Printing of High-Pressure, Heat-Resistant, Transparent Microfluidic Devices.
    Romanov V; Samuel R; Chaharlang M; Jafek AR; Frost A; Gale BK
    Anal Chem; 2018 Sep; 90(17):10450-10456. PubMed ID: 30071717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active fluidic chip produced using 3D-printing for combinatorial therapeutic screening on liver tumor spheroid.
    Feng Y; Wang B; Tian Y; Chen H; Liu Y; Fan H; Wang K; Zhang C
    Biosens Bioelectron; 2020 Mar; 151():111966. PubMed ID: 31999576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and characterization of a 3D-printed staggered herringbone mixer.
    Shenoy VJ; Edwards CE; Helgeson ME; Valentine MT
    Biotechniques; 2021 May; 70(5):285-289. PubMed ID: 34000813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel all-3D-printed cell-on-a-chip device as a useful electroanalytical tool: Application to the simultaneous voltammetric determination of caffeine and paracetamol.
    Katseli V; Economou A; Kokkinos C
    Talanta; 2020 Feb; 208():120388. PubMed ID: 31816700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components.
    Ahmed I; Sullivan K; Priye A
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D-Printed Microfluidic One-Way Valves and Pumps.
    Hinnen H; Viglione M; Munro TR; Woolley AT; Nordin GP
    Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymer Coatings in 3D-Printed Fluidic Device Channels for Improved Cellular Adherence Prior to Electrical Lysis.
    Gross BC; Anderson KB; Meisel JE; McNitt MI; Spence DM
    Anal Chem; 2015 Jun; 87(12):6335-41. PubMed ID: 25973637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.