These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 346437)

  • 61. Competition between frameshifting, termination and suppression at the frameshift site in the Escherichia coli release factor-2 mRNA.
    Adamski FM; Donly BC; Tate WP
    Nucleic Acids Res; 1993 Nov; 21(22):5074-8. PubMed ID: 7504811
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Nonsense suppression in archaea.
    Bhattacharya A; Köhrer C; Mandal D; RajBhandary UL
    Proc Natl Acad Sci U S A; 2015 May; 112(19):6015-20. PubMed ID: 25918386
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Introns are cis effectors of the nonsense-codon-mediated reduction in nuclear mRNA abundance.
    Cheng J; Belgrader P; Zhou X; Maquat LE
    Mol Cell Biol; 1994 Sep; 14(9):6317-25. PubMed ID: 8065363
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The influence of codon context on genetic code translation.
    Bossi L; Roth JR
    Nature; 1980 Jul; 286(5769):123-7. PubMed ID: 7402305
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Genetic studies of class 2 nonsense suppressors in Escherichia coli.
    Rothwell MA; Green MH; Bridges BA
    Genet Res; 1973 Dec; 22(3):223-37. PubMed ID: 4599235
    [No Abstract]   [Full Text] [Related]  

  • 66. Nucleotide sequence of the trpD gene, encoding anthranilate synthetase component II of Escherichia coli.
    Horowitz H; Christie GE; Platt T
    J Mol Biol; 1982 Apr; 156(2):245-56. PubMed ID: 6283099
    [No Abstract]   [Full Text] [Related]  

  • 67. In vitro synthesis of enzymes of the tryptophan operon of Escherichia coli. Evidence for positive control of transcription.
    Pouwels PH; van Rotterdam J
    Mol Gen Genet; 1975; 136(3):215-26. PubMed ID: 16094972
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Escherichia coli mutant trpA34 has an Asp----Asn change at active site residue 60 of the tryptophan synthetase alpha chain.
    Shirvanee L; Horn V; Yanofsky C
    J Biol Chem; 1990 Apr; 265(12):6624-5. PubMed ID: 2182623
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Constraints on codon context in Escherichia coli genes. Their possible role in modulating the efficiency of translation.
    Shpaer EG
    J Mol Biol; 1986 Apr; 188(4):555-64. PubMed ID: 3525848
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Selection for new amino acids at position 211 of the tryptophan synthetase alpha chain of Escherichia coli.
    Murgola EJ; Yanofsky C
    J Mol Biol; 1974 Jul; 86(4):775-84. PubMed ID: 4610146
    [No Abstract]   [Full Text] [Related]  

  • 71. Site-specific mutagenesis of Escherichia coli gltT yields a weak, glutamic acid-inserting ochre suppressor.
    Raftery LA; Yarus M
    J Mol Biol; 1985 Jul; 184(2):343-5. PubMed ID: 2863381
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Nucleotide sequence of the Bacillus subtilis trpE and trpD genes.
    Band L; Shimotsu H; Henner DJ
    Gene; 1984 Jan; 27(1):55-65. PubMed ID: 6425119
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Structural interactions between amino acid residues at positions 22 and 211 in the tryptophan synthetase alpha chain of Escherichia coli.
    Murgola EJ; Yanofsky C
    J Bacteriol; 1974 Feb; 117(2):444-8. PubMed ID: 4590468
    [TBL] [Abstract][Full Text] [Related]  

  • 74. UGA suppression by normal tRNA Trp in Escherichia coli: codon context effects.
    Engelberg-Kulka H
    Nucleic Acids Res; 1981 Feb; 9(4):983-91. PubMed ID: 7015288
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Using Amber and Ochre Nonsense Codons to Code Two Different Noncanonical Amino Acids in One Protein Gene.
    Tharp JM; Liu WR
    Methods Mol Biol; 2018; 1728():147-154. PubMed ID: 29404996
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Sense and nonsense in the genetic code. Three exceptional triplets can serve as both chain-terminating signals and amino acid codons.
    Garen A
    Science; 1968 Apr; 160(3824):149-59. PubMed ID: 4868223
    [No Abstract]   [Full Text] [Related]  

  • 77. Three, four or more: the translational stop signal at length.
    Tate WP; Mannering SA
    Mol Microbiol; 1996 Jul; 21(2):213-9. PubMed ID: 8858577
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Adaptation of an orthogonal archaeal leucyl-tRNA and synthetase pair for four-base, amber, and opal suppression.
    Anderson JC; Schultz PG
    Biochemistry; 2003 Aug; 42(32):9598-608. PubMed ID: 12911301
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Novel UGA-suppressors in Escherichia coli K-12.
    Chang Z; Inokuchi H; Ozeki H
    Jpn J Genet; 1990 Apr; 65(2):71-81. PubMed ID: 2198904
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The involvement of base 1054 in 16S rRNA for UGA stop codon dependent translational termination.
    Hänfler A; Kleuvers B; Göringer HU
    Nucleic Acids Res; 1990 Oct; 18(19):5625-32. PubMed ID: 2216755
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.