These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 34644049)

  • 1. Combined Effects of Zeta-potential and Temperature of Nanopores on Diffusioosmotic Ion Transport.
    Lee J; Lee K; Wang C; Ha D; Kim GH; Park J; Kim T
    Anal Chem; 2021 Oct; 93(42):14169-14177. PubMed ID: 34644049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analyses of Pore-Size-Dependent Ionic Transport in Nanopores in the Presence of Concentration and Temperature Gradients.
    Seo D; Kim D; Seo S; Park J; Kim T
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):2409-2418. PubMed ID: 36562122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymmetric ion transport through ion-channel-mimetic solid-state nanopores.
    Guo W; Tian Y; Jiang L
    Acc Chem Res; 2013 Dec; 46(12):2834-46. PubMed ID: 23713693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionic current modulation from DNA translocation through nanopores under high ionic strength and concentration gradients.
    Zhang Y; Wu G; Si W; Ma J; Yuan Z; Xie X; Liu L; Sha J; Li D; Chen Y
    Nanoscale; 2017 Jan; 9(2):930-939. PubMed ID: 28000822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the contribution of charged species at the outer surface to the ion current signal of nanopores: a theoretical study.
    Mao H; Ma Q; Xu H; Xu L; Du Q; Gao P; Xia F
    Analyst; 2021 Aug; 146(16):5089-5094. PubMed ID: 34297030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffusioosmotic flows in slit nanochannels.
    Qian S; Das B; Luo X
    J Colloid Interface Sci; 2007 Nov; 315(2):721-30. PubMed ID: 17719599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamics of Charge Regulation during Ion Transport through Silica Nanochannels.
    Ritt CL; de Souza JP; Barsukov MG; Yosinski S; Bazant MZ; Reed MA; Elimelech M
    ACS Nano; 2022 Sep; 16(9):15249-15260. PubMed ID: 36075111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-Controlled Ionic/Molecular Transport through Solid-State Nanopores and Nanochannels.
    Lu J; Jiang Y; Yu P; Jiang W; Mao L
    Chem Asian J; 2022 May; 17(10):e202200158. PubMed ID: 35324076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theory of diffusioosmosis in a charged nanochannel.
    Jing H; Das S
    Phys Chem Chem Phys; 2018 Apr; 20(15):10204-10212. PubMed ID: 29594300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific adsorption of trivalent cations in biological nanopores determines conductance dynamics and reverses ionic selectivity.
    Queralt-Martín M; Perini DA; Alcaraz A
    Phys Chem Chem Phys; 2021 Jan; 23(2):1352-1362. PubMed ID: 33367433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved Ion Transport and High Energy Conversion through Hydrogel Membrane with 3D Interconnected Nanopores.
    Chen W; Wang Q; Chen J; Zhang Q; Zhao X; Qian Y; Zhu C; Yang L; Zhao Y; Kong XY; Lu B; Jiang L; Wen L
    Nano Lett; 2020 Aug; 20(8):5705-5713. PubMed ID: 32692569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cation pumping against a concentration gradient in conical nanopores characterized by load capacitors.
    Cervera J; Ramirez P; Nasir S; Ali M; Ensinger W; Siwy ZS; Mafe S
    Bioelectrochemistry; 2023 Aug; 152():108445. PubMed ID: 37086711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concentration-gradient-dependent ion current rectification in charged conical nanopores.
    Cao L; Guo W; Wang Y; Jiang L
    Langmuir; 2012 Jan; 28(4):2194-9. PubMed ID: 22148901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion current rectification and rectification inversion in conical nanopores: a perm-selective view.
    Momotenko D; Cortés-Salazar F; Josserand J; Liu S; Shao Y; Girault HH
    Phys Chem Chem Phys; 2011 Mar; 13(12):5430-40. PubMed ID: 21344101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable Nanopore Arrays as the Basis for Ionic Circuits.
    Lucas RA; Siwy ZS
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56622-56631. PubMed ID: 33283510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation mechanism of ionic transport through short nanopores by charged exterior surfaces.
    Ma L; Liu Z; Man J; Li J; Siwy ZS; Qiu Y
    Nanoscale; 2023 Nov; 15(46):18696-18706. PubMed ID: 37947348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrolyte solution transport in electropolar nanotubes.
    Zhao J; Culligan PJ; Qiao Y; Zhou Q; Li Y; Tak M; Park T; Chen X
    J Phys Condens Matter; 2010 Aug; 22(31):315301. PubMed ID: 21399357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abnormal Ionic-Current Rectification Caused by Reversed Electroosmotic Flow under Viscosity Gradients across Thin Nanopores.
    Qiu Y; Siwy ZS; Wanunu M
    Anal Chem; 2019 Jan; 91(1):996-1004. PubMed ID: 30516369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electric control of ionic transport in sub-nm nanopores.
    Ji A; Chen Y
    RSC Adv; 2021 Apr; 11(23):13806-13813. PubMed ID: 35423930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anomalous mechanosensitive ion transport in nanoparticle-blocked nanopores.
    Xu Y; Yazbeck R; Duan C
    J Chem Phys; 2021 Jun; 154(22):224702. PubMed ID: 34241226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.