These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 34644072)

  • 1. Determining Sequence-Dependent DNA Oligonucleotide Hybridization and Dehybridization Mechanisms Using Coarse-Grained Molecular Simulation, Markov State Models, and Infrared Spectroscopy.
    Jones MS; Ashwood B; Tokmakoff A; Ferguson AL
    J Am Chem Soc; 2021 Oct; 143(42):17395-17411. PubMed ID: 34644072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequence-Dependent Mechanism of DNA Oligonucleotide Dehybridization Resolved through Infrared Spectroscopy.
    Sanstead PJ; Stevenson P; Tokmakoff A
    J Am Chem Soc; 2016 Sep; 138(36):11792-801. PubMed ID: 27519555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamics and kinetics of DNA and RNA dinucleotide hybridization to gaps and overhangs.
    Ashwood B; Jones MS; Radakovic A; Khanna S; Lee Y; Sachleben JR; Szostak JW; Ferguson AL; Tokmakoff A
    Biophys J; 2023 Aug; 122(16):3323-3339. PubMed ID: 37469144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct Observation of Activated Kinetics and Downhill Dynamics in DNA Dehybridization.
    Sanstead PJ; Tokmakoff A
    J Phys Chem B; 2018 Mar; 122(12):3088-3100. PubMed ID: 29504399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 5-Carboxylcytosine and Cytosine Protonation Distinctly Alter the Stability and Dehybridization Dynamics of the DNA Duplex.
    Ashwood B; Sanstead PJ; Dai Q; He C; Tokmakoff A
    J Phys Chem B; 2020 Jan; 124(4):627-640. PubMed ID: 31873021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation into the mechanism and dynamics of DNA association and dissociation utilizing kinetic Monte Carlo simulations.
    Menssen RJ; Kimmel GJ; Tokmakoff A
    J Chem Phys; 2021 Jan; 154(4):045101. PubMed ID: 33514113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of DNA hybridization: Transition path analysis of a simulation-informed Markov model.
    Jin R; Maibaum L
    J Chem Phys; 2019 Mar; 150(10):105103. PubMed ID: 30876357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coarse-grained simulation study of sequence effects on DNA hybridization in a concentrated environment.
    Markegard CB; Fu IW; Reddy KA; Nguyen HD
    J Phys Chem B; 2015 Feb; 119(5):1823-34. PubMed ID: 25581253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct monitoring of the thermodynamics and kinetics of DNA and RNA dinucleotide dehybridization from gaps and overhangs.
    Ashwood B; Jones MS; Radakovic A; Khanna S; Lee Y; Sachleben JR; Szostak JW; Ferguson AL; Tokmakoff A
    bioRxiv; 2023 Apr; ():. PubMed ID: 37090657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA hybridization kinetics: zippering, internal displacement and sequence dependence.
    Ouldridge TE; Sulc P; Romano F; Doye JP; Louis AA
    Nucleic Acids Res; 2013 Oct; 41(19):8886-95. PubMed ID: 23935069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics and dynamics of DNA hybridization.
    Yin Y; Zhao XS
    Acc Chem Res; 2011 Nov; 44(11):1172-81. PubMed ID: 21718008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A lattice model for the interpretation of oligonucleotide hybridization experiments.
    Sanstead PJ; Tokmakoff A
    J Chem Phys; 2019 May; 150(18):185104. PubMed ID: 31091913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Concentration and Temperature on DNA Hybridization by Two Closely Related Sequences via Large-Scale Coarse-Grained Simulations.
    Markegard CB; Gallivan CP; Cheng DD; Nguyen HD
    J Phys Chem B; 2016 Aug; 120(32):7795-806. PubMed ID: 27447850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Information Bottleneck Approach for Markov Model Construction.
    Wang D; Qiu Y; Beyerle ER; Huang X; Tiwary P
    J Chem Theory Comput; 2024 Jun; 20(12):5352-5367. PubMed ID: 38859575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidized Derivatives of 5-Methylcytosine Alter the Stability and Dehybridization Dynamics of Duplex DNA.
    Sanstead PJ; Ashwood B; Dai Q; He C; Tokmakoff A
    J Phys Chem B; 2020 Feb; 124(7):1160-1174. PubMed ID: 31986043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Weak tension accelerates hybridization and dehybridization of short oligonucleotides.
    Hart DJ; Jeong J; Gumbart JC; Kim HD
    Nucleic Acids Res; 2023 Apr; 51(7):3030-3040. PubMed ID: 36869666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genotyping by alkaline dehybridization using graphically encoded particles.
    Zhang H; DeConinck AJ; Slimmer SC; Doyle PS; Lewis JA; Nuzzo RG
    Chemistry; 2011 Mar; 17(10):2867-73. PubMed ID: 21305624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Significance of DNA bond strength in programmable nanoparticle thermodynamics and dynamics.
    Yu Q; Hu J; Hu Y; Wang R
    Soft Matter; 2018 Apr; 14(14):2665-2670. PubMed ID: 29561032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GraphVAMPNet, using graph neural networks and variational approach to Markov processes for dynamical modeling of biomolecules.
    Ghorbani M; Prasad S; Klauda JB; Brooks BR
    J Chem Phys; 2022 May; 156(18):184103. PubMed ID: 35568532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An experimentally-informed coarse-grained 3-Site-Per-Nucleotide model of DNA: structure, thermodynamics, and dynamics of hybridization.
    Hinckley DM; Freeman GS; Whitmer JK; de Pablo JJ
    J Chem Phys; 2013 Oct; 139(14):144903. PubMed ID: 24116642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.