These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Algorithms of GPU-enabled reactive force field (ReaxFF) molecular dynamics. Zheng M; Li X; Guo L J Mol Graph Model; 2013 Apr; 41():1-11. PubMed ID: 23454611 [TBL] [Abstract][Full Text] [Related]
3. Reaction analysis and visualization of ReaxFF molecular dynamics simulations. Liu J; Li X; Guo L; Zheng M; Han J; Yuan X; Nie F; Liu X J Mol Graph Model; 2014 Sep; 53():13-22. PubMed ID: 25064439 [TBL] [Abstract][Full Text] [Related]
4. Parametric Study of ReaxFF Simulation Parameters for Molecular Dynamics Modeling of Reactive Carbon Gases. Jensen BD; Bandyopadhyay A; Wise KE; Odegard GM J Chem Theory Comput; 2012 Sep; 8(9):3003-8. PubMed ID: 26605713 [TBL] [Abstract][Full Text] [Related]
5. Accelerated ReaxFF Simulations for Describing the Reactive Cross-Linking of Polymers. Vashisth A; Ashraf C; Zhang W; Bakis CE; van Duin ACT J Phys Chem A; 2018 Aug; 122(32):6633-6642. PubMed ID: 29996044 [TBL] [Abstract][Full Text] [Related]
6. Generating a skeleton reaction network for reactions of large-scale ReaxFF MD pyrolysis simulations based on a machine learning predicted reaction class. Yang S; Li X; Zheng M; Ren C; Guo L Phys Chem Chem Phys; 2024 Feb; 26(6):5649-5668. PubMed ID: 38288590 [TBL] [Abstract][Full Text] [Related]
7. ReaxFF-MPNN machine learning potential: a combination of reactive force field and message passing neural networks. Xue LY; Guo F; Wen YS; Feng SQ; Huang XN; Guo L; Li HS; Cui SX; Zhang GQ; Wang QL Phys Chem Chem Phys; 2021 Sep; 23(35):19457-19464. PubMed ID: 34524283 [TBL] [Abstract][Full Text] [Related]
8. Carbon cluster formation during thermal decomposition of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and 1,3,5-triamino-2,4,6-trinitrobenzene high explosives from ReaxFF reactive molecular dynamics simulations. Zhang L; Zybin SV; van Duin AC; Dasgupta S; Goddard WA; Kober EM J Phys Chem A; 2009 Oct; 113(40):10619-40. PubMed ID: 19791809 [TBL] [Abstract][Full Text] [Related]
9. ReaxFF/AMBER-A Framework for Hybrid Reactive/Nonreactive Force Field Molecular Dynamics Simulations. Rahnamoun A; Kaymak MC; Manathunga M; Götz AW; van Duin ACT; Merz KM; Aktulga HM J Chem Theory Comput; 2020 Dec; 16(12):7645-7654. PubMed ID: 33141581 [TBL] [Abstract][Full Text] [Related]
10. Using C-DFT to develop an e-ReaxFF force field for acetophenone radical anion. Penrod KA; Burgess MA; Akbarian D; Dabo I; Woodward WHH; van Duin ACT J Chem Phys; 2021 Dec; 155(21):214104. PubMed ID: 34879661 [TBL] [Abstract][Full Text] [Related]
11. Development of a new parameter optimization scheme for a reactive force field based on a machine learning approach. Nakata H; Bai S J Comput Chem; 2019 Sep; 40(23):2000-2012. PubMed ID: 30973999 [TBL] [Abstract][Full Text] [Related]
12. JAX-ReaxFF: A Gradient-Based Framework for Fast Optimization of Reactive Force Fields. Kaymak MC; Rahnamoun A; O'Hearn KA; van Duin ACT; Merz KM; Aktulga HM J Chem Theory Comput; 2022 Sep; 18(9):5181-5194. PubMed ID: 35978524 [TBL] [Abstract][Full Text] [Related]
13. Adaptive accelerated ReaxFF reactive dynamics with validation from simulating hydrogen combustion. Cheng T; Jaramillo-Botero A; Goddard WA; Sun H J Am Chem Soc; 2014 Jul; 136(26):9434-42. PubMed ID: 24885152 [TBL] [Abstract][Full Text] [Related]
14. Optimization of the Reax force field for the lithium-oxygen system using a high fidelity charge model. O'Hearn KA; Swift MW; Liu J; Magoulas I; Piecuch P; van Duin ACT; Aktulga HM; Qi Y J Chem Phys; 2020 Aug; 153(8):084107. PubMed ID: 32872856 [TBL] [Abstract][Full Text] [Related]
15. Simulations on the thermal decomposition of a poly(dimethylsiloxane) polymer using the ReaxFF reactive force field. Chenoweth K; Cheung S; van Duin AC; Goddard WA; Kober EM J Am Chem Soc; 2005 May; 127(19):7192-202. PubMed ID: 15884961 [TBL] [Abstract][Full Text] [Related]
16. Development and application of a ReaxFF reactive force field for hydrogen combustion. Agrawalla S; van Duin AC J Phys Chem A; 2011 Feb; 115(6):960-72. PubMed ID: 21261320 [TBL] [Abstract][Full Text] [Related]
17. Reactive Molecular Dynamics Simulation of Fullerene Combustion Synthesis: ReaxFF vs DFTB Potentials. Qian HJ; van Duin AC; Morokuma K; Irle S J Chem Theory Comput; 2011 Jul; 7(7):2040-8. PubMed ID: 26606475 [TBL] [Abstract][Full Text] [Related]
18. The DFT-ReaxFF Hybrid Reactive Dynamics Method with Application to the Reductive Decomposition Reaction of the TFSI and DOL Electrolyte at a Lithium-Metal Anode Surface. Liu Y; Yu P; Wu Y; Yang H; Xie M; Huai L; Goddard WA; Cheng T J Phys Chem Lett; 2021 Feb; 12(4):1300-1306. PubMed ID: 33502211 [TBL] [Abstract][Full Text] [Related]
19. Effects of fuel additives on the thermal cracking of n-decane from reactive molecular dynamics. Wang QD; Hua XX; Cheng XM; Li JQ; Li XY J Phys Chem A; 2012 Apr; 116(15):3794-801. PubMed ID: 22435791 [TBL] [Abstract][Full Text] [Related]
20. Combined ReaxFF and Ab Initio MD Simulations of Brown Coal Oxidation and Coal-Water Interactions. Yu S; Chu R; Li X; Wu G; Meng X Entropy (Basel); 2021 Dec; 24(1):. PubMed ID: 35052097 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]