These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 34644087)

  • 1. Electropumping Phenomenon in Modified Carbon Nanotubes.
    Ding C; Zhao Y; Su J
    Langmuir; 2021 Oct; 37(42):12318-12326. PubMed ID: 34644087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Promoting Electroosmotic Water Flow through a Carbon Nanotube by Weakening the Competition between Cations and Anions in a Lateral Electric Field.
    Zhang X; Liu Y; Su J
    Langmuir; 2022 Mar; 38(11):3530-3539. PubMed ID: 35259293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Role of Interface Ions in the Control of Water Transport through a Carbon Nanotube.
    Zhao Y; Chen J; Huang D; Su J
    Langmuir; 2019 Oct; 35(41):13442-13451. PubMed ID: 31539260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of temperature on the coupling transport of water and ions through a carbon nanotube in an electric field.
    Salman S; Zhao Y; Zhang X; Su J
    J Chem Phys; 2020 Nov; 153(18):184503. PubMed ID: 33187400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How ions block the single-file water transport through a carbon nanotube.
    Su Z; Chen J; Zhao Y; Su J
    Phys Chem Chem Phys; 2019 Jun; 21(21):11298-11305. PubMed ID: 31106311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interface nanoparticle control of a nanometer water pump.
    Su J; Zhao Y; Fang C; Bilal Ahmed S; Shi Y
    Phys Chem Chem Phys; 2017 Aug; 19(33):22406-22416. PubMed ID: 28808710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular insights into the nanoconfinement effect on the structure and dynamics of ionic liquids in carbon nanotubes.
    Liu HQ; Wang YL; Li B
    Phys Chem Chem Phys; 2024 May; 26(20):14691-14704. PubMed ID: 38716569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the Origin of Water Flow through Carbon Nanotubes.
    Su J; Yang K
    Chemphyschem; 2015 Nov; 16(16):3488-92. PubMed ID: 26346506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rectification Correlation between Water and Ions through Asymmetric Graphene Channels.
    Li S; Zhao Y; Zhang X; Ding C; Su J
    J Phys Chem B; 2021 Oct; 125(40):11232-11241. PubMed ID: 34597047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water flow in carbon nanotubes: the role of tube chirality.
    Sam A; K VP; Sathian SP
    Phys Chem Chem Phys; 2019 Mar; 21(12):6566-6573. PubMed ID: 30849155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metallicity-Dependent Ultrafast Water Transport in Carbon Nanotubes.
    Velioğlu S; Karahan HE; Goh K; Bae TH; Chen Y; Chew JW
    Small; 2020 Jun; 16(25):e1907575. PubMed ID: 32432833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structures of water molecules in carbon nanotubes under electric fields.
    Winarto ; Takaiwa D; Yamamoto E; Yasuoka K
    J Chem Phys; 2015 Mar; 142(12):124701. PubMed ID: 25833597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Ion Rejection in Carbon Nanotubes by a Lateral Electric Field.
    Zhang X; Li S; Su J
    Langmuir; 2022 Aug; 38(32):10065-10074. PubMed ID: 35921520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electropumping of nanofluidic water by linear and angular momentum coupling: theoretical foundations and molecular dynamics simulations.
    Daivis PJ; Hansen JS; Todd BD
    Phys Chem Chem Phys; 2021 Nov; 23(44):25003-25018. PubMed ID: 34739012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of nanotube-length on the transport properties of single-file water molecules: transition from bidirectional to unidirectional.
    Su J; Guo H
    J Chem Phys; 2011 Jun; 134(24):244513. PubMed ID: 21721649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental evidence of rapid water transport through carbon nanotubes embedded in polymeric desalination membranes.
    Lee HD; Kim HW; Cho YH; Park HB
    Small; 2014 Jul; 10(13):2653-60. PubMed ID: 24668882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced water transport through a carbon nanotube controlled by the lateral pressure.
    Lv F; Fang C; Su J
    Nanotechnology; 2019 Jun; 30(24):245707. PubMed ID: 30836337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluid structure and transport properties of water inside carbon nanotubes.
    Liu Y; Wang Q; Wu T; Zhang L
    J Chem Phys; 2005 Dec; 123(23):234701. PubMed ID: 16392938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulation study of ionic hydration in negatively charged single-walled carbon nanotubes.
    Guo X; Shao Q; Lu L; Zhu Y; Wei M; Lu X
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7620-4. PubMed ID: 21137996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface charge density governs the ionic current rectification direction in asymmetric graphene oxide channels.
    Li S; Zhang X; Su J
    Phys Chem Chem Phys; 2023 Mar; 25(10):7477-7486. PubMed ID: 36852635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.