BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 34644155)

  • 1. A Tale of Two Checkpoints: ATR Inhibition and PD-(L)1 Blockade.
    Ngoi NYL; Peng G; Yap TA
    Annu Rev Med; 2022 Jan; 73():231-250. PubMed ID: 34644155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ataxia telangiectasia and Rad3-related inhibitors and cancer therapy: where we stand.
    Mei L; Zhang J; He K; Zhang J
    J Hematol Oncol; 2019 Apr; 12(1):43. PubMed ID: 31018854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Marek's Disease Virus Disables the ATR-Chk1 Pathway by Activating STAT3.
    Lian X; Bao C; Li X; Zhang X; Chen H; Jung YS; Qian Y
    J Virol; 2019 May; 93(9):. PubMed ID: 30787154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. WEE1 inhibitor and ataxia telangiectasia and RAD3-related inhibitor trigger stimulator of interferon gene-dependent immune response and enhance tumor treatment efficacy through programmed death-ligand 1 blockade.
    Wu X; Kang X; Zhang X; Xie W; Su Y; Liu X; Guo L; Guo E; Li F; Hu D; Qin X; Fu Y; Peng W; Jia J; Wang C
    Cancer Sci; 2021 Nov; 112(11):4444-4456. PubMed ID: 34382294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ATM and Rad3-Related (ATR) Protein Kinase Pathway Is Activated by Herpes Simplex Virus 1 and Required for Efficient Viral Replication.
    Edwards TG; Bloom DC; Fisher C
    J Virol; 2018 Mar; 92(6):. PubMed ID: 29263259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATR/CHK1 inhibitors and cancer therapy.
    Qiu Z; Oleinick NL; Zhang J
    Radiother Oncol; 2018 Mar; 126(3):450-464. PubMed ID: 29054375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of Host ATR-CHK1 Pathway in Hepatitis B Virus Covalently Closed Circular DNA Formation.
    Luo J; Luckenbaugh L; Hu H; Yan Z; Gao L; Hu J
    mBio; 2020 Feb; 11(1):. PubMed ID: 32071277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New horizons in lung cancer management through ATR/CHK1 pathway modulation.
    Thapa R; Afzal O; Bhat AA; Goyal A; Alfawaz Altamimi AS; Almalki WH; Alzarea SI; Kazmi I; Singh SK; Dua K; Thangavelu L; Gupta G
    Future Med Chem; 2023 Oct; 15(19):1807-1818. PubMed ID: 37877252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting ATR in DNA damage response and cancer therapeutics.
    Fokas E; Prevo R; Hammond EM; Brunner TB; McKenna WG; Muschel RJ
    Cancer Treat Rev; 2014 Feb; 40(1):109-17. PubMed ID: 23583268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Restored replication fork stabilization, a mechanism of PARP inhibitor resistance, can be overcome by cell cycle checkpoint inhibition.
    Haynes B; Murai J; Lee JM
    Cancer Treat Rev; 2018 Dec; 71():1-7. PubMed ID: 30269007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic lethality between auranofin-induced oxidative DNA damage and ATR inhibition in cancer cells.
    Zhang S; Zhao Y; Wang X; Qi C; Tian J; Zou Z
    Life Sci; 2023 Nov; 332():122131. PubMed ID: 37778414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An extending ATR-CHK1 circuitry: the replication stress response and beyond.
    Simoneau A; Zou L
    Curr Opin Genet Dev; 2021 Dec; 71():92-98. PubMed ID: 34329853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATR-Chk1 activation mitigates replication stress caused by mismatch repair-dependent processing of DNA damage.
    Gupta D; Lin B; Cowan A; Heinen CD
    Proc Natl Acad Sci U S A; 2018 Feb; 115(7):1523-1528. PubMed ID: 29378956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emerging strategies for cancer therapy by ATR inhibitors.
    Yano K; Shiotani B
    Cancer Sci; 2023 Jul; 114(7):2709-2721. PubMed ID: 37189251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear pCHK1 as a potential biomarker of increased sensitivity to ATR inhibition.
    Sundararajan V; Tan TZ; Lim D; Peng Y; Wengner AM; Ngoi NYL; Jeyasekharan AD; Tan DSP
    J Pathol; 2023 Feb; 259(2):194-204. PubMed ID: 36373784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Depletion of ATR selectively sensitizes ATM-deficient human mammary epithelial cells to ionizing radiation and DNA-damaging agents.
    Cui Y; Palii SS; Innes CL; Paules RS
    Cell Cycle; 2014; 13(22):3541-50. PubMed ID: 25483091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATR mediates cisplatin resistance in 3D-cultured breast cancer cells via translesion DNA synthesis modulation.
    Gomes LR; Rocha CRR; Martins DJ; Fiore APZP; Kinker GS; Bruni-Cardoso A; Menck CFM
    Cell Death Dis; 2019 Jun; 10(6):459. PubMed ID: 31189884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting ATR as Cancer Therapy: A new era for synthetic lethality and synergistic combinations?
    Bradbury A; Hall S; Curtin N; Drew Y
    Pharmacol Ther; 2020 Mar; 207():107450. PubMed ID: 31836456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of ATR-dependent feedback activation of Chk1 sensitises cancer cells to Chk1 inhibitor monotherapy.
    Massey AJ
    Cancer Lett; 2016 Dec; 383(1):41-52. PubMed ID: 27693461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PARP Inhibition Increases the Reliance on ATR/CHK1 Checkpoint Signaling Leading to Synthetic Lethality-An Alternative Treatment Strategy for Epithelial Ovarian Cancer Cells Independent from HR Effectiveness.
    Gralewska P; Gajek A; Marczak A; Mikuła M; Ostrowski J; Śliwińska A; Rogalska A
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33352723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.