These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 34644159)

  • 21. Automatic Object Detection Algorithm-Based Braille Image Generation System for the Recognition of Real-Life Obstacles for Visually Impaired People.
    Lee D; Cho J
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214510
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assistive obstacle detection and navigation devices for vision-impaired users.
    Ong SK; Zhang J; Nee AY
    Disabil Rehabil Assist Technol; 2013 Sep; 8(5):409-16. PubMed ID: 23350879
    [TBL] [Abstract][Full Text] [Related]  

  • 23. "RecognizeCane" : The new concept of a cane which recognizes the most common objects and safety clues.
    Scherlen AC; Dumas JC; Guedj B; Vignot A
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6357-60. PubMed ID: 18003475
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sensor-Based Prototype of a Smart Assistant for Visually Impaired People-Preliminary Results.
    Șipoș E; Ciuciu C; Ivanciu L
    Sensors (Basel); 2022 Jun; 22(11):. PubMed ID: 35684892
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improving obstacle detection by redesign of walking canes for blind persons.
    Schellingerhout R; Bongers RM; van Grinsven R; Smitsman AW; Van Galen GP
    Ergonomics; 2001 Apr; 44(5):513-26. PubMed ID: 11345494
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Low-Cost Ultrasonic Range Improvements for an Assistive Device.
    Abreu D; Toledo J; Codina B; Suárez A
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34205803
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The MAPS: Toward a Novel Mobility Assistance System for Visually Impaired People.
    Romeo K; Pissaloux E; Gay SL; Truong NT; Djoussouf L
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591005
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automatic generation of indoor navigation instructions for blind users using a user-centric graph.
    Dong H; Ganz A
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():902-5. PubMed ID: 25570105
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new primary mobility tool for the visually impaired: A white cane-adaptive mobility device hybrid.
    Rizzo JR; Conti K; Thomas T; Hudson TE; Wall Emerson R; Kim DS
    Assist Technol; 2018; 30(5):219-225. PubMed ID: 28506151
    [TBL] [Abstract][Full Text] [Related]  

  • 30. InWalker: smart white cane for the blind.
    Husin MH; Lim YK
    Disabil Rehabil Assist Technol; 2020 Aug; 15(6):701-707. PubMed ID: 31729282
    [No Abstract]   [Full Text] [Related]  

  • 31. Improving Walking Path Generation Through Biped Constraint in Indoor Navigation System for Visually Impaired Individuals.
    Na Q; Zhou H; Yuan H; Gui M; Teng H
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1221-1232. PubMed ID: 38466607
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Survey and analysis of the current status of research in the field of outdoor navigation for the blind.
    Lian Y; Liu DE; Ji WZ
    Disabil Rehabil Assist Technol; 2024 May; 19(4):1657-1675. PubMed ID: 37402242
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Navigation aid for blind persons by visual-to-auditory sensory substitution: A pilot study.
    Neugebauer A; Rifai K; Getzlaff M; Wahl S
    PLoS One; 2020; 15(8):e0237344. PubMed ID: 32818953
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Smartphone-based computer vision travelling aids for blind and visually impaired individuals: A systematic review.
    Budrionis A; Plikynas D; Daniušis P; Indrulionis A
    Assist Technol; 2022 Mar; 34(2):178-194. PubMed ID: 32207640
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Connected cane: Tactile button input for controlling gestures of iOS voiceover embedded in a white cane.
    Batterman JM; Martin VF; Yeung D; Walker BN
    Assist Technol; 2018; 30(2):91-99. PubMed ID: 28140766
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Training System for White Cane Technique Using Illusory Pulling Cues Induced by Asymmetric Vibrations.
    Tanabe T; Nunokawa K; Doi K; Ino S
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():305-313. PubMed ID: 35108205
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wearable ultrasonic guiding device with white cane for the visually impaired: A preliminary verisimilitude experiment.
    Cheng PH
    Assist Technol; 2016; 28(3):127-36. PubMed ID: 26853050
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Validation of an eBAT as a mobility aid for blind people.
    Abreu D; Codina B; Toledo J; Suárez A
    Assist Technol; 2022 Mar; 34(2):195-203. PubMed ID: 32238095
    [TBL] [Abstract][Full Text] [Related]  

  • 39. User evaluation of two electronic mobility aids for persons who are visually impaired: a quasi-experimental study using a standardized mobility course.
    Roentgen UR; Gelderblom GJ; de Witte LP
    Assist Technol; 2012; 24(2):110-20; quiz 121-2. PubMed ID: 22876733
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The "EyeCane", a new electronic travel aid for the blind: Technology, behavior & swift learning.
    Maidenbaum S; Hanassy S; Abboud S; Buchs G; Chebat DR; Levy-Tzedek S; Amedi A
    Restor Neurol Neurosci; 2014; 32(6):813-24. PubMed ID: 25201814
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.