These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 34644300)

  • 1. The novel anti-CRISPR AcrIIA22 relieves DNA torsion in target plasmids and impairs SpyCas9 activity.
    Forsberg KJ; Schmidtke DT; Werther R; Uribe RV; Hausman D; Sommer MOA; Stoddard BL; Kaiser BK; Malik HS
    PLoS Biol; 2021 Oct; 19(10):e3001428. PubMed ID: 34644300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional metagenomics-guided discovery of potent Cas9 inhibitors in the human microbiome.
    Forsberg KJ; Bhatt IV; Schmidtke DT; Javanmardi K; Dillard KE; Stoddard BL; Finkelstein IJ; Kaiser BK; Malik HS
    Elife; 2019 Sep; 8():. PubMed ID: 31502535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery of potent and versatile CRISPR-Cas9 inhibitors engineered for chemically controllable genome editing.
    Song G; Zhang F; Tian C; Gao X; Zhu X; Fan D; Tian Y
    Nucleic Acids Res; 2022 Mar; 50(5):2836-2853. PubMed ID: 35188577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AcrIIA28 is a metalloprotein that specifically inhibits targeted-DNA loading to SpyCas9 by binding to the REC3 domain.
    Kim GE; Park HH
    Nucleic Acids Res; 2024 Jun; 52(11):6459-6471. PubMed ID: 38726868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potent CRISPR-Cas9 inhibitors from
    Watters KE; Shivram H; Fellmann C; Lew RJ; McMahon B; Doudna JA
    Proc Natl Acad Sci U S A; 2020 Mar; 117(12):6531-6539. PubMed ID: 32156733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potent Cas9 Inhibition in Bacterial and Human Cells by AcrIIC4 and AcrIIC5 Anti-CRISPR Proteins.
    Lee J; Mir A; Edraki A; Garcia B; Amrani N; Lou HE; Gainetdinov I; Pawluk A; Ibraheim R; Gao XD; Liu P; Davidson AR; Maxwell KL; Sontheimer EJ
    mBio; 2018 Dec; 9(6):. PubMed ID: 30514786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of inhibition of CRISPR-Cas9 by anti-CRISPR protein AcrIIC1.
    Zhu Y; Yin S; Li Z
    Biochem Biophys Res Commun; 2023 Apr; 654():34-39. PubMed ID: 36878037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Meet the Anti-CRISPRs: Widespread Protein Inhibitors of CRISPR-Cas Systems.
    Hwang S; Maxwell KL
    CRISPR J; 2019 Feb; 2(1):23-30. PubMed ID: 31021234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cas9 degradation in human cells using phage anti-CRISPR proteins.
    Meacham Z; de Tacca LA; Bondy-Denomy J; Rabuka D; Schelle M
    PLoS Biol; 2023 Dec; 21(12):e3002431. PubMed ID: 38064533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Francisella novicida CRISPR-Cas Systems Can Functionally Complement Each Other in DNA Defense while Providing Target Flexibility.
    Ratner HK; Weiss DS
    J Bacteriol; 2020 May; 202(12):. PubMed ID: 32284320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-Cas systems target a diverse collection of invasive mobile genetic elements in human microbiomes.
    Zhang Q; Rho M; Tang H; Doak TG; Ye Y
    Genome Biol; 2013 Apr; 14(4):R40. PubMed ID: 23628424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An anti-CRISPR from a virulent streptococcal phage inhibits Streptococcus pyogenes Cas9.
    Hynes AP; Rousseau GM; Lemay ML; Horvath P; Romero DA; Fremaux C; Moineau S
    Nat Microbiol; 2017 Oct; 2(10):1374-1380. PubMed ID: 28785032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning predicts new anti-CRISPR proteins.
    Eitzinger S; Asif A; Watters KE; Iavarone AT; Knott GJ; Doudna JA; Minhas FUAA
    Nucleic Acids Res; 2020 May; 48(9):4698-4708. PubMed ID: 32286628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery and Characterization of Cas9 Inhibitors Disseminated across Seven Bacterial Phyla.
    Uribe RV; van der Helm E; Misiakou MA; Lee SW; Kol S; Sommer MOA
    Cell Host Microbe; 2019 Feb; 25(2):233-241.e5. PubMed ID: 30737174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of an anti-CRISPR protein, AcrIIA1.
    Ka D; An SY; Suh JY; Bae E
    Nucleic Acids Res; 2018 Jan; 46(1):485-492. PubMed ID: 29182776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid characterization of anti-CRISPR proteins and optogenetically engineered variants using a versatile plasmid interference system.
    Song G; Tian C; Li J; Zhang F; Peng Y; Gao X; Tian Y
    Nucleic Acids Res; 2023 Dec; 51(22):12381-12396. PubMed ID: 37930830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR-Cas systems are present predominantly on mobile genetic elements in Vibrio species.
    McDonald ND; Regmi A; Morreale DP; Borowski JD; Boyd EF
    BMC Genomics; 2019 Feb; 20(1):105. PubMed ID: 30717668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Many (Inter)faces of Anti-CRISPRs: Modulation of CRISPR-Cas Structure and Dynamics by Mechanistically Diverse Inhibitors.
    Belato HB; Lisi GP
    Biomolecules; 2023 Jan; 13(2):. PubMed ID: 36830633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of CRISPR-mediated virus-host interactions in the human gut microbiome.
    López-Beltrán A; Botelho J; Iranzo J
    ISME J; 2024 Jul; ():. PubMed ID: 39023219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AcaFinder: Genome Mining for Anti-CRISPR-Associated Genes.
    Yang B; Zheng J; Yin Y
    mSystems; 2022 Dec; 7(6):e0081722. PubMed ID: 36413017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.