These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
356 related articles for article (PubMed ID: 34644413)
1. A small molecule CFTR potentiator restores ATP-dependent channel gating to the cystic fibrosis mutant G551D-CFTR. Liu J; Berg AP; Wang Y; Jantarajit W; Sutcliffe KJ; Stevens EB; Cao L; Pregel MJ; Sheppard DN Br J Pharmacol; 2022 Apr; 179(7):1319-1337. PubMed ID: 34644413 [TBL] [Abstract][Full Text] [Related]
2. Two Small Molecules Restore Stability to a Subpopulation of the Cystic Fibrosis Transmembrane Conductance Regulator with the Predominant Disease-causing Mutation. Meng X; Wang Y; Wang X; Wrennall JA; Rimington TL; Li H; Cai Z; Ford RC; Sheppard DN J Biol Chem; 2017 Mar; 292(9):3706-3719. PubMed ID: 28087700 [TBL] [Abstract][Full Text] [Related]
3. Potentiation of the cystic fibrosis transmembrane conductance regulator Cl Wang Y; Cai Z; Gosling M; Sheppard DN Am J Physiol Lung Cell Mol Physiol; 2018 Nov; 315(5):L846-L857. PubMed ID: 30136610 [TBL] [Abstract][Full Text] [Related]
4. Differential thermostability and response to cystic fibrosis transmembrane conductance regulator potentiators of human and mouse F508del-CFTR. Bose SJ; Bijvelds MJC; Wang Y; Liu J; Cai Z; Bot AGM; de Jonge HR; Sheppard DN Am J Physiol Lung Cell Mol Physiol; 2019 Jul; 317(1):L71-L86. PubMed ID: 30969810 [TBL] [Abstract][Full Text] [Related]
5. Resveratrol and ivacaftor are additive G551D CFTR-channel potentiators: therapeutic implications for cystic fibrosis sinus disease. Cho DY; Zhang S; Lazrak A; Grayson JW; Peña Garcia JA; Skinner DF; Lim DJ; Mackey C; Banks C; Matalon S; Woodworth BA Int Forum Allergy Rhinol; 2019 Jan; 9(1):100-105. PubMed ID: 30152192 [TBL] [Abstract][Full Text] [Related]
7. Two rare variants that affect the same amino acid in CFTR have distinct responses to ivacaftor. Li H; Rodrat M; Al-Salmani MK; Veselu DF; Han ST; Raraigh KS; Cutting GR; Sheppard DN J Physiol; 2024 Jan; 602(2):333-354. PubMed ID: 38186087 [TBL] [Abstract][Full Text] [Related]
8. Synergistic Potentiation of Cystic Fibrosis Transmembrane Conductance Regulator Gating by Two Chemically Distinct Potentiators, Ivacaftor (VX-770) and 5-Nitro-2-(3-Phenylpropylamino) Benzoate. Lin WY; Sohma Y; Hwang TC Mol Pharmacol; 2016 Sep; 90(3):275-85. PubMed ID: 27413118 [TBL] [Abstract][Full Text] [Related]
9. CFTR potentiators partially restore channel function to A561E-CFTR, a cystic fibrosis mutant with a similar mechanism of dysfunction as F508del-CFTR. Wang Y; Liu J; Loizidou A; Bugeja LA; Warner R; Hawley BR; Cai Z; Toye AM; Sheppard DN; Li H Br J Pharmacol; 2014 Oct; 171(19):4490-503. PubMed ID: 24902474 [TBL] [Abstract][Full Text] [Related]
10. Cystic fibrosis transmembrane conductance regulator (CFTR) potentiators protect G551D but not ΔF508 CFTR from thermal instability. Liu X; Dawson DC Biochemistry; 2014 Sep; 53(35):5613-8. PubMed ID: 25148434 [TBL] [Abstract][Full Text] [Related]
11. Ivacaftor treatment of cystic fibrosis patients with the G551D mutation: a review of the evidence. Kotha K; Clancy JP Ther Adv Respir Dis; 2013 Oct; 7(5):288-96. PubMed ID: 24004658 [TBL] [Abstract][Full Text] [Related]
12. Cystic fibrosis transmembrane conductance regulator-modifying medications: the future of cystic fibrosis treatment. Pettit RS Ann Pharmacother; 2012; 46(7-8):1065-75. PubMed ID: 22739718 [TBL] [Abstract][Full Text] [Related]
13. Cystic fibrosis transmembrane conductance regulator (CFTR) potentiator VX-770 (ivacaftor) opens the defective channel gate of mutant CFTR in a phosphorylation-dependent but ATP-independent manner. Eckford PD; Li C; Ramjeesingh M; Bear CE J Biol Chem; 2012 Oct; 287(44):36639-49. PubMed ID: 22942289 [TBL] [Abstract][Full Text] [Related]
14. Potentiators (specific therapies for class III and IV mutations) for cystic fibrosis. Patel S; Sinha IP; Dwan K; Echevarria C; Schechter M; Southern KW Cochrane Database Syst Rev; 2015 Mar; (3):CD009841. PubMed ID: 25811419 [TBL] [Abstract][Full Text] [Related]
15. Ivacaftor potentiation of multiple CFTR channels with gating mutations. Yu H; Burton B; Huang CJ; Worley J; Cao D; Johnson JP; Urrutia A; Joubran J; Seepersaud S; Sussky K; Hoffman BJ; Van Goor F J Cyst Fibros; 2012 May; 11(3):237-45. PubMed ID: 22293084 [TBL] [Abstract][Full Text] [Related]
16. Tezacaftor/Ivacaftor in Subjects with Cystic Fibrosis and F508del/F508del-CFTR or F508del/G551D-CFTR. Donaldson SH; Pilewski JM; Griese M; Cooke J; Viswanathan L; Tullis E; Davies JC; Lekstrom-Himes JA; Wang LT; Am J Respir Crit Care Med; 2018 Jan; 197(2):214-224. PubMed ID: 28930490 [TBL] [Abstract][Full Text] [Related]
17. ORKAMBI-Mediated Rescue of Mucociliary Clearance in Cystic Fibrosis Primary Respiratory Cultures Is Enhanced by Arginine Uptake, Arginase Inhibition, and Promotion of Nitric Oxide Signaling to the Cystic Fibrosis Transmembrane Conductance Regulator Channel. Wu YS; Jiang J; Ahmadi S; Lew A; Laselva O; Xia S; Bartlett C; Ip W; Wellhauser L; Ouyang H; Gonska T; Moraes TJ; Bear CE Mol Pharmacol; 2019 Oct; 96(4):515-525. PubMed ID: 31427400 [TBL] [Abstract][Full Text] [Related]
18. Elexacaftor co-potentiates the activity of F508del and gating mutants of CFTR. Veit G; Vaccarin C; Lukacs GL J Cyst Fibros; 2021 Sep; 20(5):895-898. PubMed ID: 33775603 [TBL] [Abstract][Full Text] [Related]
19. Low free drug concentration prevents inhibition of F508del CFTR functional expression by the potentiator VX-770 (ivacaftor). Matthes E; Goepp J; Carlile GW; Luo Y; Dejgaard K; Billet A; Robert R; Thomas DY; Hanrahan JW Br J Pharmacol; 2016 Feb; 173(3):459-70. PubMed ID: 26492939 [TBL] [Abstract][Full Text] [Related]
20. Lumacaftor and ivacaftor in the management of patients with cystic fibrosis: current evidence and future prospects. Kuk K; Taylor-Cousar JL Ther Adv Respir Dis; 2015 Dec; 9(6):313-26. PubMed ID: 26416827 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]