BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 34644695)

  • 1. Reducing Kapitza resistance between graphene/water interface via interfacial superlattice structure.
    Peng X; Jiang P; Ouyang Y; Lu S; Ren W; Chen J
    Nanotechnology; 2021 Oct; 33(3):. PubMed ID: 34644695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kapitza Resistance between Few-Layer Graphene and Water: Liquid Layering Effects.
    Alexeev D; Chen J; Walther JH; Giapis KP; Angelikopoulos P; Koumoutsakos P
    Nano Lett; 2015 Sep; 15(9):5744-9. PubMed ID: 26274389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manipulating thermal resistance at the solid-fluid interface through monolayer deposition.
    Hasan MR; Vo TQ; Kim B
    RSC Adv; 2019 Feb; 9(9):4948-4956. PubMed ID: 35514672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kapitza resistance at water-graphene interfaces.
    Alosious S; Kannam SK; Sathian SP; Todd BD
    J Chem Phys; 2020 Jun; 152(22):224703. PubMed ID: 32534537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic structure causing an obvious difference in thermal conductance at the Pd-H
    Li S; Chen Y; Zhao J; Wang C; Wei N
    Nanoscale; 2020 Sep; 12(34):17870-17879. PubMed ID: 32840546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An excellent candidate for largely reducing interfacial thermal resistance: a nano-confined mass graded interface.
    Zhou Y; Zhang X; Hu M
    Nanoscale; 2016 Jan; 8(4):1994-2002. PubMed ID: 26700890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of Kapitza resistance at fluid-solid interfaces.
    Alosious S; Kannam SK; Sathian SP; Todd BD
    J Chem Phys; 2019 Nov; 151(19):194502. PubMed ID: 31757152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal resistance of nanoscopic liquid-liquid interfaces: dependence on chemistry and molecular architecture.
    Patel HA; Garde S; Keblinski P
    Nano Lett; 2005 Nov; 5(11):2225-31. PubMed ID: 16277458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlocal thermal transport across embedded few-layer graphene sheets.
    Liu Y; Huxtable ST; Yang B; Sumpter BG; Qiao R
    J Phys Condens Matter; 2014 Dec; 26(50):502101. PubMed ID: 25393230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal transport at a solid-nanofluid interface: from increase of thermal resistance towards a shift of rapid boiling.
    Han H; Merabia S; Müller-Plathe F
    Nanoscale; 2017 Jun; 9(24):8314-8320. PubMed ID: 28585964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of interfacial molecular mobility on thermal boundary conductance at solid-liquid interface.
    Anandakrishnan A; Ramos-Alvarado B; Kannam SK; Sathian SP
    J Chem Phys; 2023 Mar; 158(9):094710. PubMed ID: 36889936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remarkable enhancement in the Kapitza resistance and electron potential barrier of chemically modified In2O3(ZnO)9 natural superlattice interfaces.
    Liang X
    Phys Chem Chem Phys; 2015 Nov; 17(44):29655-60. PubMed ID: 26477746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning the interfacial friction force and thermal conductance by altering phonon properties at contact interface.
    Dong Y; Ding Y; Rui Z; Lian F; Hui W; Wu J; Wu Z; Yan P
    Nanotechnology; 2022 Mar; 33(23):. PubMed ID: 35180710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal transport of graphene-C
    Zhang G; Dong S; Wang X; Xin G
    Nanotechnology; 2023 Nov; 35(5):. PubMed ID: 37879323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal Transport at Solid-Liquid Interfaces: High Pressure Facilitates Heat Flow through Nonlocal Liquid Structuring.
    Han H; Mérabia S; Müller-Plathe F
    J Phys Chem Lett; 2017 May; 8(9):1946-1951. PubMed ID: 28403613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal transport across the CoSb
    Yin K; Shi L; Zhong Y; Ma X; Li M; He X
    Phys Chem Chem Phys; 2023 Jan; 25(3):2517-2522. PubMed ID: 36602119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near-Interface Defects in Graphene/H-BN In-Plane Heterostructures: Insights into the Interfacial Thermal Transport.
    Zhang N; Zhou B; Li D; Qi D; Wu Y; Zheng H; Yang B
    Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of non-covalent functionalization on the thermal conductance of graphene/organic interfaces.
    Lin S; Buehler MJ
    Nanotechnology; 2013 Apr; 24(16):165702. PubMed ID: 23535514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coherent and incoherent phonon transport in a graphene and nitrogenated holey graphene superlattice.
    Wang X; Wang M; Hong Y; Wang Z; Zhang J
    Phys Chem Chem Phys; 2017 Sep; 19(35):24240-24248. PubMed ID: 28848976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultralow Interfacial Thermal Resistance of Graphene Thermal Interface Materials with Surface Metal Liquefaction.
    Dai W; Ren XJ; Yan Q; Wang S; Yang M; Lv L; Ying J; Chen L; Tao P; Sun L; Xue C; Yu J; Song C; Nishimura K; Jiang N; Lin CT
    Nanomicro Lett; 2022 Dec; 15(1):9. PubMed ID: 36484932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.