These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 34644744)

  • 1. Artificial intelligence forecasting mortality at an intensive care unit and comparison to a logistic regression system.
    Nistal-Nuño B
    Einstein (Sao Paulo); 2021; 19():eAO6283. PubMed ID: 34644744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting in-hospital mortality in ICU patients with sepsis using gradient boosting decision tree.
    Li K; Shi Q; Liu S; Xie Y; Liu J
    Medicine (Baltimore); 2021 May; 100(19):e25813. PubMed ID: 34106618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early hospital mortality prediction of intensive care unit patients using an ensemble learning approach.
    Awad A; Bader-El-Den M; McNicholas J; Briggs J
    Int J Med Inform; 2017 Dec; 108():185-195. PubMed ID: 29132626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine Learning Prediction Models for Mortality in Intensive Care Unit Patients with Lactic Acidosis.
    Pattharanitima P; Thongprayoon C; Kaewput W; Qureshi F; Qureshi F; Petnak T; Srivali N; Gembillo G; O'Corragain OA; Chesdachai S; Vallabhajosyula S; Guru PK; Mao MA; Garovic VD; Dillon JJ; Cheungpasitporn W
    J Clin Med; 2021 Oct; 10(21):. PubMed ID: 34768540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emergency department triage prediction of clinical outcomes using machine learning models.
    Raita Y; Goto T; Faridi MK; Brown DFM; Camargo CA; Hasegawa K
    Crit Care; 2019 Feb; 23(1):64. PubMed ID: 30795786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developing machine learning models for prediction of mortality in the medical intensive care unit.
    Nistal-Nuño B
    Comput Methods Programs Biomed; 2022 Apr; 216():106663. PubMed ID: 35123348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting hospital and emergency department utilization among community-dwelling older adults: Statistical and machine learning approaches.
    Jones A; Costa AP; Pesevski A; McNicholas PD
    PLoS One; 2018; 13(11):e0206662. PubMed ID: 30383850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring performance in health care: case-mix adjustment by boosted decision trees.
    Neumann A; Holstein J; Le Gall JR; Lepage E
    Artif Intell Med; 2004 Oct; 32(2):97-113. PubMed ID: 15364094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A machine learning-based risk stratification tool for in-hospital mortality of intensive care unit patients with heart failure.
    Luo C; Zhu Y; Zhu Z; Li R; Chen G; Wang Z
    J Transl Med; 2022 Mar; 20(1):136. PubMed ID: 35303896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Prediction of intensive care unit readmission for critically ill patients based on ensemble learning].
    Lin Y; Wu JY; Lin K; Hu YH; Kong GL
    Beijing Da Xue Xue Bao Yi Xue Ban; 2021 Jun; 53(3):566-572. PubMed ID: 34145862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning to predict 30-day quality-adjusted survival in critically ill patients with cancer.
    Santos HGD; Zampieri FG; Normilio-Silva K; Silva GTD; Lima ACP; Cavalcanti AB; Chiavegatto Filho ADP
    J Crit Care; 2020 Feb; 55():73-78. PubMed ID: 31715534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of the Obstetric Early Warning Score in critically ill patients for the prediction of maternal death.
    Paternina-Caicedo A; Miranda J; Bourjeily G; Levinson A; Dueñas C; Bello-Muñoz C; Rojas-Suarez JA
    Am J Obstet Gynecol; 2017 Jan; 216(1):58.e1-58.e8. PubMed ID: 27751799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Interpretable Machine Learning Model for Accurate Prediction of Sepsis in the ICU.
    Nemati S; Holder A; Razmi F; Stanley MD; Clifford GD; Buchman TG
    Crit Care Med; 2018 Apr; 46(4):547-553. PubMed ID: 29286945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting hospitalization following psychiatric crisis care using machine learning.
    Blankers M; van der Post LFM; Dekker JJM
    BMC Med Inform Decis Mak; 2020 Dec; 20(1):332. PubMed ID: 33302948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using machine learning methods to predict in-hospital mortality of sepsis patients in the ICU.
    Kong G; Lin K; Hu Y
    BMC Med Inform Decis Mak; 2020 Oct; 20(1):251. PubMed ID: 33008381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Long short-term memory and Logistic regression for mortality risk prediction of intensive care unit patients with stroke].
    Deng YH; Jiang Y; Wang ZY; Liu S; Wang YX; Liu BH
    Beijing Da Xue Xue Bao Yi Xue Ban; 2022 Jun; 54(3):458-467. PubMed ID: 35701122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records.
    Thorsen-Meyer HC; Nielsen AB; Nielsen AP; Kaas-Hansen BS; Toft P; Schierbeck J; Strøm T; Chmura PJ; Heimann M; Dybdahl L; Spangsege L; Hulsen P; Belling K; Brunak S; Perner A
    Lancet Digit Health; 2020 Apr; 2(4):e179-e191. PubMed ID: 33328078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of the performance of a model based on administrative data and a model based on clinical data: effect of severity of illness on standardized mortality ratios of intensive care units.
    Brinkman S; Abu-Hanna A; van der Veen A; de Jonge E; de Keizer NF
    Crit Care Med; 2012 Feb; 40(2):373-8. PubMed ID: 21983367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mortality prediction in intensive care units (ICUs) using a deep rule-based fuzzy classifier.
    Davoodi R; Moradi MH
    J Biomed Inform; 2018 Mar; 79():48-59. PubMed ID: 29471111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction model of in-hospital mortality in intensive care unit patients with heart failure: machine learning-based, retrospective analysis of the MIMIC-III database.
    Li F; Xin H; Zhang J; Fu M; Zhou J; Lian Z
    BMJ Open; 2021 Jul; 11(7):e044779. PubMed ID: 34301649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.