These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 34644744)

  • 21. Predicting self-intercepted medication ordering errors using machine learning.
    King CR; Abraham J; Fritz BA; Cui Z; Galanter W; Chen Y; Kannampallil T
    PLoS One; 2021; 16(7):e0254358. PubMed ID: 34260662
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Comparison of machine learning method and logistic regression model in prediction of acute kidney injury in severely burned patients].
    Tang CQ; Li JQ; Xu DY; Liu XB; Hou WJ; Lyu KY; Xiao SC; Xia ZF
    Zhonghua Shao Shang Za Zhi; 2018 Jun; 34(6):343-348. PubMed ID: 29961290
    [No Abstract]   [Full Text] [Related]  

  • 23. A comparison of logistic regression models with alternative machine learning methods to predict the risk of in-hospital mortality in emergency medical admissions via external validation.
    Faisal M; Scally A; Howes R; Beatson K; Richardson D; Mohammed MA
    Health Informatics J; 2020 Mar; 26(1):34-44. PubMed ID: 30488755
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multicenter validation of a machine-learning algorithm for 48-h all-cause mortality prediction.
    Mohamadlou H; Panchavati S; Calvert J; Lynn-Palevsky A; Le S; Allen A; Pellegrini E; Green-Saxena A; Barton C; Fletcher G; Shieh L; Stark PB; Chettipally U; Shimabukuro D; Feldman M; Das R
    Health Informatics J; 2020 Sep; 26(3):1912-1925. PubMed ID: 31884847
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of machine learning models for the prediction of mortality of patients with unplanned extubation in intensive care units.
    Hsieh MH; Hsieh MJ; Chen CM; Hsieh CC; Chao CM; Lai CC
    Sci Rep; 2018 Nov; 8(1):17116. PubMed ID: 30459331
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Subgroup mortality probability models: are they necessary for specialized intensive care units?
    Nathanson BH; Higgins TL; Kramer AA; Copes WS; Stark M; Teres D
    Crit Care Med; 2009 Aug; 37(8):2375-86. PubMed ID: 19531946
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting in-hospital mortality of patients with acute kidney injury in the ICU using random forest model.
    Lin K; Hu Y; Kong G
    Int J Med Inform; 2019 May; 125():55-61. PubMed ID: 30914181
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of Machine Learning Methods With Traditional Models for Use of Administrative Claims With Electronic Medical Records to Predict Heart Failure Outcomes.
    Desai RJ; Wang SV; Vaduganathan M; Evers T; Schneeweiss S
    JAMA Netw Open; 2020 Jan; 3(1):e1918962. PubMed ID: 31922560
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicting death by suicide using administrative health care system data: Can recurrent neural network, one-dimensional convolutional neural network, and gradient boosted trees models improve prediction performance?
    Sanderson M; Bulloch AG; Wang J; Williamson T; Patten SB
    J Affect Disord; 2020 Mar; 264():107-114. PubMed ID: 32056739
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A machine learning-based model for 1-year mortality prediction in patients admitted to an Intensive Care Unit with a diagnosis of sepsis.
    García-Gallo JE; Fonseca-Ruiz NJ; Celi LA; Duitama-Muñoz JF
    Med Intensiva (Engl Ed); 2020 Apr; 44(3):160-170. PubMed ID: 30245121
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Teaching a Machine to Feel Postoperative Pain: Combining High-Dimensional Clinical Data with Machine Learning Algorithms to Forecast Acute Postoperative Pain.
    Tighe PJ; Harle CA; Hurley RW; Aytug H; Boezaart AP; Fillingim RB
    Pain Med; 2015 Jul; 16(7):1386-401. PubMed ID: 26031220
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Machine learning combining CT findings and clinical parameters improves prediction of length of stay and ICU admission in torso trauma.
    Staziaki PV; Wu D; Rayan JC; Santo IDO; Nan F; Maybury A; Gangasani N; Benador I; Saligrama V; Scalera J; Anderson SW
    Eur Radiol; 2021 Jul; 31(7):5434-5441. PubMed ID: 33475772
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A statistically rigorous deep neural network approach to predict mortality in trauma patients admitted to the intensive care unit.
    Ahmed FS; Ali L; Joseph BA; Ikram A; Ul Mustafa R; Bukhari SAC
    J Trauma Acute Care Surg; 2020 Oct; 89(4):736-742. PubMed ID: 32773672
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation of Machine Intelligence in Compound Cell Activity Classification.
    Fan Y; Zhang Y; Hua Y; Wang Y; Zhu L; Zhao J; Yang Y; Chen X; Lu S; Lu T; Chen Y; Liu H
    Mol Pharm; 2019 Nov; 16(11):4472-4484. PubMed ID: 31580683
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multicenter Comparison of Machine Learning Methods and Conventional Regression for Predicting Clinical Deterioration on the Wards.
    Churpek MM; Yuen TC; Winslow C; Meltzer DO; Kattan MW; Edelson DP
    Crit Care Med; 2016 Feb; 44(2):368-74. PubMed ID: 26771782
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling mortality in the intensive care unit: comparing the performance of a back-propagation, associative-learning neural network with multivariate logistic regression.
    Doig GS; Inman KJ; Sibbald WJ; Martin CM; Robertson JM
    Proc Annu Symp Comput Appl Med Care; 1993; ():361-5. PubMed ID: 8130495
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Supervised machine learning for the early prediction of acute respiratory distress syndrome (ARDS).
    Le S; Pellegrini E; Green-Saxena A; Summers C; Hoffman J; Calvert J; Das R
    J Crit Care; 2020 Dec; 60():96-102. PubMed ID: 32777759
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Classification of Biodegradable Substances Using Balanced Random Trees and Boosted C5.0 Decision Trees.
    Elsayad AM; Nassef AM; Al-Dhaifallah M; Elsayad KA
    Int J Environ Res Public Health; 2020 Dec; 17(24):. PubMed ID: 33322123
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of sperm extraction in non-obstructive azoospermia patients: a machine-learning perspective.
    Zeadna A; Khateeb N; Rokach L; Lior Y; Har-Vardi I; Harlev A; Huleihel M; Lunenfeld E; Levitas E
    Hum Reprod; 2020 Jul; 35(7):1505-1514. PubMed ID: 32538428
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comprehensive analysis of machine learning models for prediction of sub-clinical mastitis: Deep Learning and Gradient-Boosted Trees outperform other models.
    Ebrahimi M; Mohammadi-Dehcheshmeh M; Ebrahimie E; Petrovski KR
    Comput Biol Med; 2019 Nov; 114():103456. PubMed ID: 31605926
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.