These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 34645182)
1. [Construction of microRNA-21 terahertz metamaterial sensing method based on duplex-specific nuclease triggered rolling circle amplification]. Zhan XY; Yang S; Zhang Y; Yang X; Fu WL Zhonghua Yu Fang Yi Xue Za Zhi; 2021 Feb; 55(2):212-218. PubMed ID: 34645182 [No Abstract] [Full Text] [Related]
2. Streptavidin-functionalized terahertz metamaterials for attomolar exosomal microRNA assay in pancreatic cancer based on duplex-specific nuclease-triggered rolling circle amplification. Zhan X; Yang S; Huang G; Yang L; Zhang Y; Tian H; Xie F; Lamy de la Chapelle M; Yang X; Fu W Biosens Bioelectron; 2021 Sep; 188():113314. PubMed ID: 34030095 [TBL] [Abstract][Full Text] [Related]
3. Label-free fluorescence detection of circulating microRNAs based on duplex-specific nuclease-assisted target recycling coupled with rolling circle amplification. Fan T; Mao Y; Liu F; Zhang W; Lin JS; Yin J; Tan Y; Huang X; Jiang Y Talanta; 2019 Aug; 200():480-486. PubMed ID: 31036212 [TBL] [Abstract][Full Text] [Related]
4. A terahertz metamaterial biosensor for sensitive detection of microRNAs based on gold-nanoparticles and strand displacement amplification. Yang K; Li J; Lamy de la Chapelle M; Huang G; Wang Y; Zhang J; Xu D; Yao J; Yang X; Fu W Biosens Bioelectron; 2021 Mar; 175():112874. PubMed ID: 33293192 [TBL] [Abstract][Full Text] [Related]
5. Highly sensitive and specific electrochemical biosensor for microRNA-21 detection by coupling catalytic hairpin assembly with rolling circle amplification. Li Q; Zeng F; Lyu N; Liang J Analyst; 2018 May; 143(10):2304-2309. PubMed ID: 29675521 [TBL] [Abstract][Full Text] [Related]
6. Nicking-enhanced rolling circle amplification for sensitive fluorescent detection of cancer-related microRNAs. Gao Z; Wu C; Lv S; Wang C; Zhang N; Xiao S; Han Y; Xu H; Zhang Y; Li F; Lyu J; Shen Z Anal Bioanal Chem; 2018 Oct; 410(26):6819-6826. PubMed ID: 30066196 [TBL] [Abstract][Full Text] [Related]
7. Sensitive and specific microRNA detection by RNA dependent DNA ligation and rolling circle optical signal amplification. Zhou C; Huang R; Zhou X; Xing D Talanta; 2020 Aug; 216():120954. PubMed ID: 32456939 [TBL] [Abstract][Full Text] [Related]
8. Hybridization chain reaction assisted terahertz metamaterial biosensor for highly sensitive detection of microRNAs. Chen J; Hu F; Lin S; Song Z; Duan Z; Zhang L; Jiang M Spectrochim Acta A Mol Biomol Spectrosc; 2024 Feb; 307():123646. PubMed ID: 37980831 [TBL] [Abstract][Full Text] [Related]
9. A simple G-quadruplex molecular beacon-based biosensor for highly selective detection of microRNA. Zhou H; Yang C; Chen H; Li X; Li Y; Fan X Biosens Bioelectron; 2017 Jan; 87():552-557. PubMed ID: 27611474 [TBL] [Abstract][Full Text] [Related]
10. A microfluidic paper-based laser-induced fluorescence sensor based on duplex-specific nuclease amplification for selective and sensitive detection of miRNAs in cancer cells. Cai X; Zhang H; Yu X; Wang W Talanta; 2020 Aug; 216():120996. PubMed ID: 32456922 [TBL] [Abstract][Full Text] [Related]
11. Colorimetric and fluorescent dual-mode detection of microRNA based on duplex-specific nuclease assisted gold nanoparticle amplification. Huang J; Shangguan J; Guo Q; Ma W; Wang H; Jia R; Ye Z; He X; Wang K Analyst; 2019 Aug; 144(16):4917-4924. PubMed ID: 31313769 [TBL] [Abstract][Full Text] [Related]
12. A light-up "G-quadruplex nanostring" for label-free and selective detection of miRNA via duplex-specific nuclease mediated tandem rolling circle amplification. Liu LQ; Yin F; Lu Y; Yan XL; Wu CC; Li X; Li C Nanomedicine; 2021 Feb; 32():102339. PubMed ID: 33227538 [TBL] [Abstract][Full Text] [Related]
13. Sensitive electrochemical biosensor for MicroRNAs based on duplex-specific nuclease-assisted target recycling followed with gold nanoparticles and enzymatic signal amplification. Zhang H; Fan M; Jiang J; Shen Q; Cai C; Shen J Anal Chim Acta; 2019 Aug; 1064():33-39. PubMed ID: 30982515 [TBL] [Abstract][Full Text] [Related]
14. Carbon nanotube enhanced label-free detection of microRNAs based on hairpin probe triggered solid-phase rolling-circle amplification. Tian Q; Wang Y; Deng R; Lin L; Liu Y; Li J Nanoscale; 2015 Jan; 7(3):987-93. PubMed ID: 25470558 [TBL] [Abstract][Full Text] [Related]
15. Target invasion-triggered signal amplification based on duplex-specific nuclease for selective and sensitive detection of miRNAs. Zhang L; Zhang Z; Xie J; Zhao Y; Tian G; Jiang H; Tao H; Liu J Anal Chim Acta; 2022 Jan; 1189():339182. PubMed ID: 34815041 [TBL] [Abstract][Full Text] [Related]
16. Rolling circle amplification-mediated in situ synthesis of palladium nanoparticles for the ultrasensitive electrochemical detection of microRNA. Zhang C; Li D; Li D; Wen K; Yang X; Zhu Y Analyst; 2019 Jun; 144(12):3817-3825. PubMed ID: 31086898 [TBL] [Abstract][Full Text] [Related]
17. An "off-on" electrochemiluminescent biosensor based on DNAzyme-assisted target recycling and rolling circle amplifications for ultrasensitive detection of microRNA. Zhang P; Wu X; Yuan R; Chai Y Anal Chem; 2015 Mar; 87(6):3202-7. PubMed ID: 25679541 [TBL] [Abstract][Full Text] [Related]
18. Sensitive detection of microRNA in complex biological samples by using two stages DSN-assisted target recycling signal amplification method. Zhang K; Wang K; Zhu X; Xu F; Xie M Biosens Bioelectron; 2017 Jan; 87():358-364. PubMed ID: 27589398 [TBL] [Abstract][Full Text] [Related]
19. Ultrasensitive and Multiple Disease-Related MicroRNA Detection Based on Tetrahedral DNA Nanostructures and Duplex-Specific Nuclease-Assisted Signal Amplification. Xu F; Dong H; Cao Y; Lu H; Meng X; Dai W; Zhang X; Al-Ghanim KA; Mahboob S ACS Appl Mater Interfaces; 2016 Dec; 8(49):33499-33505. PubMed ID: 27960393 [TBL] [Abstract][Full Text] [Related]
20. A label-free mass spectrometry detection of microRNA by signal switching from high-molecular-weight polynucleotides to highly sensitive small molecules. Li X; Zhuang X; Lu J Talanta; 2021 Mar; 224():121899. PubMed ID: 33379105 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]