These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
374 related articles for article (PubMed ID: 34645406)
1. Physiological responses and transcriptomic changes reveal the mechanisms underlying adaptation of Stylosanthes guianensis to phosphorus deficiency. Chen Z; Song J; Li X; Arango J; Cardoso JA; Rao I; Schultze-Kraft R; Peters M; Mo X; Liu G BMC Plant Biol; 2021 Oct; 21(1):466. PubMed ID: 34645406 [TBL] [Abstract][Full Text] [Related]
2. Multi-omics analysis reveals the roles of purple acid phosphatases in organic phosphorus utilization by the tropical legume Stylosanthes guianensis. Luo J; Chen Z; Huang R; Wu Y; Liu C; Cai Z; Dong R; Arango J; Rao IM; Schultze-Kraft R; Liu G; Liu P Plant J; 2024 Feb; 117(3):729-746. PubMed ID: 37932930 [TBL] [Abstract][Full Text] [Related]
3. Metabolic alterations provide insights into Stylosanthes roots responding to phosphorus deficiency. Luo J; Liu Y; Zhang H; Wang J; Chen Z; Luo L; Liu G; Liu P BMC Plant Biol; 2020 Feb; 20(1):85. PubMed ID: 32087672 [TBL] [Abstract][Full Text] [Related]
4. Characterization of phosphate transporter genes and the function of SgPT1 involved in phosphate uptake in Stylosanthes guianensis. An N; Huang J; Xue Y; Liu P; Liu G; Zhu S; Chen Z Plant Physiol Biochem; 2023 Jan; 194():731-741. PubMed ID: 36577197 [TBL] [Abstract][Full Text] [Related]
5. Physiological responses and proteomic changes reveal insights into Stylosanthes response to manganese toxicity. Liu P; Huang R; Hu X; Jia Y; Li J; Luo J; Liu Q; Luo L; Liu G; Chen Z BMC Plant Biol; 2019 May; 19(1):212. PubMed ID: 31113380 [TBL] [Abstract][Full Text] [Related]
6. Characterization of purple acid phosphatases involved in extracellular dNTP utilization in Stylosanthes. Liu PD; Xue YB; Chen ZJ; Liu GD; Tian J J Exp Bot; 2016 Jul; 67(14):4141-54. PubMed ID: 27194738 [TBL] [Abstract][Full Text] [Related]
7. Characterization of contrasting rice (Oryza sativa L.) genotypes reveals the Pi-efficient schema for phosphate starvation tolerance. Kumar S; Pallavi ; Chugh C; Seem K; Kumar S; Vinod KK; Mohapatra T BMC Plant Biol; 2021 Jun; 21(1):282. PubMed ID: 34154533 [TBL] [Abstract][Full Text] [Related]
8. Development of transgenic composite Stylosanthes plants to study root growth regulated by a β-expansin gene, SgEXPB1, under phosphorus deficiency. Wang L; Wang W; Miao Y; Peters M; Schultze-Kraft R; Liu G; Chen Z Plant Cell Rep; 2023 Mar; 42(3):575-585. PubMed ID: 36624204 [TBL] [Abstract][Full Text] [Related]
10. Multi-omics-based identification of purple acid phosphatases and metabolites involved in phosphorus recycling in stylo root exudates. Wu Y; Zhao C; Zhao X; Yang L; Liu C; Jiang L; Liu G; Liu P; Luo L Int J Biol Macromol; 2023 Jun; 241():124569. PubMed ID: 37100319 [TBL] [Abstract][Full Text] [Related]
11. Physiological and transcriptomic analyses reveal the roles of secondary metabolism in the adaptive responses of Stylosanthes to manganese toxicity. Jia Y; Li X; Liu Q; Hu X; Li J; Dong R; Liu P; Liu G; Luo L; Chen Z BMC Genomics; 2020 Dec; 21(1):861. PubMed ID: 33272205 [TBL] [Abstract][Full Text] [Related]
12. Comparative transcriptome analysis reveals novel insights into transcriptional responses to phosphorus starvation in oil palm (Elaeis guineensis) root. Kong SL; Abdullah SNA; Ho CL; Musa MHB; Yeap WC BMC Genom Data; 2021 Feb; 22(1):6. PubMed ID: 33568046 [TBL] [Abstract][Full Text] [Related]
13. Greater morphological and primary metabolic adaptations in roots contribute to phosphate-deficiency tolerance in the bread wheat cultivar Kenong199. Zheng L; Karim MR; Hu YG; Shen R; Lan P BMC Plant Biol; 2021 Aug; 21(1):381. PubMed ID: 34412589 [TBL] [Abstract][Full Text] [Related]
14. Transcriptome analysis provides insights into the root response of Chinese fir to phosphorus deficiency. Chen W; Zhou M; Zhao M; Chen R; Tigabu M; Wu P; Li M; Ma X BMC Plant Biol; 2021 Nov; 21(1):525. PubMed ID: 34758730 [TBL] [Abstract][Full Text] [Related]
15. Integration of metabolome and transcriptome analyses highlights soybean roots responding to phosphorus deficiency by modulating phosphorylated metabolite processes. Mo X; Zhang M; Liang C; Cai L; Tian J Plant Physiol Biochem; 2019 Jun; 139():697-706. PubMed ID: 31054472 [TBL] [Abstract][Full Text] [Related]
16. Characterization of SgALMT genes reveals the function of SgALMT2 in conferring aluminum tolerance in Stylosanthes guianensis through the mediation of malate exudation. Miao Y; Hu X; Wang L; Schultze-Kraft R; Wang W; Chen Z Plant Physiol Biochem; 2024 Mar; 208():108535. PubMed ID: 38503187 [TBL] [Abstract][Full Text] [Related]
17. Comparative transcriptomic and physiological analyses unravel wheat source root adaptation to phosphorous deficiency. Luo D; Usman M; Pang F; Zhang W; Qin Y; Li Q; Li Y; Xing Y; Dong D Sci Rep; 2024 May; 14(1):11050. PubMed ID: 38745054 [TBL] [Abstract][Full Text] [Related]
18. GmWRKY46, a WRKY transcription factor, negatively regulates phosphorus tolerance primarily through modifying root morphology in soybean. Liu X; Yang Y; Wang R; Cui R; Xu H; Sun C; Wang J; Zhang H; Chen H; Zhang D Plant Sci; 2022 Feb; 315():111148. PubMed ID: 35067311 [TBL] [Abstract][Full Text] [Related]
19. A root-associated purple acid phosphatase, SgPAP23, mediates extracellular phytate-P utilization in Stylosanthes guianensis. Liu P; Cai Z; Chen Z; Mo X; Ding X; Liang C; Liu G; Tian J Plant Cell Environ; 2018 Dec; 41(12):2821-2834. PubMed ID: 30066375 [TBL] [Abstract][Full Text] [Related]
20. Aluminium tolerance and high phosphorus efficiency helps Stylosanthes better adapt to low-P acid soils. Du YM; Tian J; Liao H; Bai CJ; Yan XL; Liu GD Ann Bot; 2009 Jun; 103(8):1239-47. PubMed ID: 19324896 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]