These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 34645793)
1. Exposure to 16 h of normobaric hypoxia induces ionic edema in the healthy brain. Biller A; Badde S; Heckel A; Guericke P; Bendszus M; Nagel AM; Heiland S; Mairbäurl H; Bärtsch P; Schommer K Nat Commun; 2021 Oct; 12(1):5987. PubMed ID: 34645793 [TBL] [Abstract][Full Text] [Related]
2. An Observational Cerebral Magnetic Resonance Imaging Study Following 7 Days at 4554 m. Kühn S; Gerlach D; Noblé HJ; Weber F; Rittweger J; Jordan J; Limper U High Alt Med Biol; 2019 Dec; 20(4):407-416. PubMed ID: 31724893 [No Abstract] [Full Text] [Related]
3. Hypoxia augments LPS-induced inflammation and triggers high altitude cerebral edema in mice. Zhou Y; Huang X; Zhao T; Qiao M; Zhao X; Zhao M; Xu L; Zhao Y; Wu L; Wu K; Chen R; Fan M; Zhu L Brain Behav Immun; 2017 Aug; 64():266-275. PubMed ID: 28433745 [TBL] [Abstract][Full Text] [Related]
4. Hypoxia-induced acute mountain sickness is associated with intracellular cerebral edema: a 3 T magnetic resonance imaging study. Schoonman GG; Sándor PS; Nirkko AC; Lange T; Jaermann T; Dydak U; Kremer C; Ferrari MD; Boesiger P; Baumgartner RW J Cereb Blood Flow Metab; 2008 Jan; 28(1):198-206. PubMed ID: 17519973 [TBL] [Abstract][Full Text] [Related]
6. [Establishment and Evaluation of a Mice Model of High-Altitude Cerebral Edema]. Chunhua ; Baimakangzhuo Sichuan Da Xue Xue Bao Yi Xue Ban; 2023 Nov; 54(6):1269-1275. PubMed ID: 38162056 [TBL] [Abstract][Full Text] [Related]
7. Roles of the hypoximir microRNA-424/322 in acute hypoxia and hypoxia-induced pulmonary vascular leakage. Tsai SH; Huang PH; Tsai HY; Hsu YJ; Chen YW; Wang JC; Chen YH; Lin SJ FASEB J; 2019 Nov; 33(11):12565-12575. PubMed ID: 31461385 [TBL] [Abstract][Full Text] [Related]
8. High-altitude cerebral edema: its own entity or end-stage acute mountain sickness? Turner REF; Gatterer H; Falla M; Lawley JS J Appl Physiol (1985); 2021 Jul; 131(1):313-325. PubMed ID: 33856254 [TBL] [Abstract][Full Text] [Related]
9. Acute and Evolving MRI of High-Altitude Cerebral Edema: Microbleeds, Edema, and Pathophysiology. Hackett PH; Yarnell PR; Weiland DA; Reynard KB AJNR Am J Neuroradiol; 2019 Mar; 40(3):464-469. PubMed ID: 30679208 [TBL] [Abstract][Full Text] [Related]
10. Emerging concepts in acute mountain sickness and high-altitude cerebral edema: from the molecular to the morphological. Bailey DM; Bärtsch P; Knauth M; Baumgartner RW Cell Mol Life Sci; 2009 Nov; 66(22):3583-94. PubMed ID: 19763397 [TBL] [Abstract][Full Text] [Related]
11. Brain structure and neurocognitive function in two professional mountaineers during 35 days of severe normobaric hypoxia. Sönksen SE; Kühn S; Basner M; Gerlach D; Hoffmann F; Mühl C; Tank J; Noblé HJ; Akgün K; Ziemssen T; Jordan J; Limper U Eur J Neurol; 2022 Oct; 29(10):3112-3116. PubMed ID: 35726171 [TBL] [Abstract][Full Text] [Related]
12. Multimodal analysis of the effects of dexamethasone on high-altitude cerebral oedema: protocol for a pilot study. Fisher O; Benson RA; Wayte S; Kimani PK; Hutchinson C; Imray CHE Trials; 2019 Oct; 20(1):604. PubMed ID: 31651350 [TBL] [Abstract][Full Text] [Related]
14. NB-3 expression in endothelial cells contributes to the maintenance of blood brain barrier integrity in a mouse high-altitude cerebral edema model. Zhou Y; Yan F; Han X; Huang X; Cheng X; Geng Y; Jiang X; Han Y; Zhao M; Zhu L Exp Neurol; 2022 Aug; 354():114116. PubMed ID: 35584741 [TBL] [Abstract][Full Text] [Related]
15. Cerebral volumetric changes induced by prolonged hypoxic exposure and whole-body exercise. Rupp T; Jubeau M; Lamalle L; Warnking JM; Millet GY; Wuyam B; Esteve F; Levy P; Krainik A; Verges S J Cereb Blood Flow Metab; 2014 Nov; 34(11):1802-9. PubMed ID: 25160673 [TBL] [Abstract][Full Text] [Related]
16. Global profiling of protein lactylation in microglia in experimental high-altitude cerebral edema. Jiang X; Gao J; Fei X; Geng Y; Yue X; Shi Z; Cheng X; Zhao T; Fan M; Wu H; Zhao M; Zhu L Cell Commun Signal; 2024 Jul; 22(1):374. PubMed ID: 39054523 [TBL] [Abstract][Full Text] [Related]
17. Investigation of prolonged hypobaric hypoxia-induced change in rat brain using T2 relaxometry and diffusion tensor imaging at 7T. Koundal S; Gandhi S; Kaur T; Trivedi R; Khushu S Neuroscience; 2015 Mar; 289():106-13. PubMed ID: 25592421 [TBL] [Abstract][Full Text] [Related]
18. Blood-brain barrier KCa3.1 channels: evidence for a role in brain Na uptake and edema in ischemic stroke. Chen YJ; Wallace BK; Yuen N; Jenkins DP; Wulff H; O'Donnell ME Stroke; 2015 Jan; 46(1):237-44. PubMed ID: 25477223 [TBL] [Abstract][Full Text] [Related]
19. Volumetric quantification of brain swelling after hypobaric hypoxia exposure. Mórocz IA; Zientara GP; Gudbjartsson H; Muza S; Lyons T; Rock PB; Kikinis R; Jólesz FA Exp Neurol; 2001 Mar; 168(1):96-104. PubMed ID: 11170724 [TBL] [Abstract][Full Text] [Related]
20. Free radical-mediated damage to barrier function is not associated with altered brain morphology in high-altitude headache. Bailey DM; Roukens R; Knauth M; Kallenberg K; Christ S; Mohr A; Genius J; Storch-Hagenlocher B; Meisel F; McEneny J; Young IS; Steiner T; Hess K; Bärtsch P J Cereb Blood Flow Metab; 2006 Jan; 26(1):99-111. PubMed ID: 15959459 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]