These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 34645801)

  • 1. Memristor-based biomimetic compound eye for real-time collision detection.
    Wang Y; Gong Y; Huang S; Xing X; Lv Z; Wang J; Yang JQ; Zhang G; Zhou Y; Han ST
    Nat Commun; 2021 Oct; 12(1):5979. PubMed ID: 34645801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. M current regulates firing mode and spike reliability in a collision-detecting neuron.
    Dewell RB; Gabbiani F
    J Neurophysiol; 2018 Oct; 120(4):1753-1764. PubMed ID: 30044671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-linear neuronal responses as an emergent property of afferent networks: a case study of the locust lobula giant movement detector.
    Bermúdez i Badia S; Bernardet U; Verschure PF
    PLoS Comput Biol; 2010 Mar; 6(3):e1000701. PubMed ID: 20300653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A bio-inspired visual collision detection mechanism for cars: combining insect inspired neurons to create a robust system.
    Stafford R; Santer RD; Rind FC
    Biosystems; 2007 Feb; 87(2-3):164-71. PubMed ID: 17027143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collision avoidance and a looming sensitive neuron: size matters but biggest is not necessarily best.
    Rind FC; Santer RD
    Proc Biol Sci; 2004 Feb; 271 Suppl 3(Suppl 3):S27-9. PubMed ID: 15101410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-supervised learning of the biologically-inspired obstacle avoidance of hexapod walking robot.
    Čížek P; Faigl J
    Bioinspir Biomim; 2019 May; 14(4):046002. PubMed ID: 30995613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fine and distributed subcellular retinotopy of excitatory inputs to the dendritic tree of a collision-detecting neuron.
    Zhu Y; Gabbiani F
    J Neurophysiol; 2016 Jun; 115(6):3101-12. PubMed ID: 27009157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using a mobile robot to study locust collision avoidance responses.
    Blanchard M; Verschure PF; Rind FC
    Int J Neural Syst; 1999 Oct; 9(5):405-10. PubMed ID: 10630469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computation of object approach by a wide-field, motion-sensitive neuron.
    Gabbiani F; Krapp HG; Laurent G
    J Neurosci; 1999 Feb; 19(3):1122-41. PubMed ID: 9920674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Re-framing bio-plausible collision detection: identifying shared meta-properties through strategic prototyping.
    Wu H; Yue S; Hu C
    Front Neurorobot; 2024; 18():1349498. PubMed ID: 38333372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural network based on the input organization of an identified neuron signaling impending collision.
    Rind FC; Bramwell DI
    J Neurophysiol; 1996 Mar; 75(3):967-85. PubMed ID: 8867110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of electrotonic structure and synaptic mapping on the receptive field properties of a collision-detecting neuron.
    Peron SP; Krapp HG; Gabbiani F
    J Neurophysiol; 2007 Jan; 97(1):159-77. PubMed ID: 17021031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An insect-inspired model facilitating autonomous navigation by incorporating goal approaching and collision avoidance.
    Sun X; Fu Q; Peng J; Yue S
    Neural Netw; 2023 Aug; 165():106-118. PubMed ID: 37285728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Collision detection in complex dynamic scenes using an LGMD-based visual neural network with feature enhancement.
    Yue S; Rind FC
    IEEE Trans Neural Netw; 2006 May; 17(3):705-16. PubMed ID: 16722174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing LGMD-based model for collision prediction via binocular structure.
    Zheng Y; Wang Y; Wu G; Li H; Peng J
    Front Neurosci; 2023; 17():1247227. PubMed ID: 37732308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatiotemporal stimulus properties modulate responses to trajectory changes in a locust looming-sensitive pathway.
    Dick PC; Gray JR
    J Neurophysiol; 2014 May; 111(9):1736-45. PubMed ID: 24478154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Response properties and receptive field organization of collision-sensitive neurons in the optic tectum of bullfrog, Rana catesbeiana.
    Kang HJ; Li XH
    Neurosci Bull; 2010 Aug; 26(4):304-16. PubMed ID: 20651812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Bio-Inspired Probabilistic Neural Network Model for Noise-Resistant Collision Perception.
    Hong J; Sun X; Peng J; Fu Q
    Biomimetics (Basel); 2024 Feb; 9(3):. PubMed ID: 38534821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Angular Acceleration Based Looming Detector for Moving UAVs.
    Zhao J; Xie Q; Shuang F; Yue S
    Biomimetics (Basel); 2024 Jan; 9(1):. PubMed ID: 38248596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model of feedforward, global, and lateral inhibition in the locust visual system predicts responses to looming stimuli.
    Olson EGN; Wiens TK; Gray JR
    Biol Cybern; 2021 Jun; 115(3):245-265. PubMed ID: 33997912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.